• 1
    Wrong, O.M. (1988) Bacterial metabolism of protein and endogenous nitrogen compounds. In: Role of the Gut Flora in Toxicity and Cancer (Rowland, I.R., Ed.), pp. 227–262. Academic Press, New York.
  • 2
    Cummings, J.H., Macfarlane, G.T. and Drasar, B.S. (1989) The gut microflora and its significance. In: Gastrointestinal and Oesophageal Pathology (Whithead, R., Ed.), pp. 201–219. Churchill Livingstone, Edinburgh.
  • 3
    Gibson, S.A.W., McFarlan, C., Hay, S. and Macfarlane, G.T. (1989) Significance of microflora in proteolysis in the colon. Appl. Environ. Microbiol. 55, 679683.
  • 4
    Macfarlane, G.T. and Allison, C. (1986) Utilisation of protein by human gut bacteria. FEMS Microbiol. Ecol. 38, 1924.
  • 5
    Holdeman, L.V., Cato, E.P. and Moore, W.E.C. (Eds.) (1977) Anaerobic Laboratory Manual, 4th edn. Virginia Polytechnic Institute Anaerobe Laboratory, Blacksburg, VA.
  • 6
    Bryant, M.P. and Robinson, I.M. (1962) Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol. 84, 605614.
  • 7
    Pilgram, A.F., Gray, F.V., Weller, R.A. and Belling, C.B. (1970) Synthesis of microbial protein from ammonia in the sheep's rumen and the proportion of dietary nitrogen converted into microbial nitrogen. Br. J. Nutr. 24, 589598.
  • 8
    Pittman, K.A. and Bryant, M.P. (1964) Peptides and other nitrogen sources for growth of Bacteroides ruminicola. J. Bacteriol. 88, 401410.
  • 9
    Pittman, K.A., Lakshmanan, S. and Bryant, M.P. (1967) Oligopeptide uptake by Bacteroides ruminicola. J. Bacteriol. 93, 14991508.
  • 10
    Varel, V.H. and Bryant, M.P. (1974) Nutritional features of Bacteroides fragilis. Appl. Microbiol. 30, 781785.
  • 11
    Hullah, W.A. and Blackburn, T.H. (1971) Uptake and incorporation of amino acids and peptides by Bacteroides amylophilus. Appl. Microbiol. 21, 187191.
  • 12
    Stevenson, R.M.W. (1979) Amino acid uptake systems in Bacteroides ruminicola. Can. J. Microbiol. 25, 11611168.
  • 13
    Macfarlane, G.T., Gibson, G.R., Beatty, E. and Cummings, J.H. (1992) Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiol. Ecol. 101, 8188.
  • 14
    Macfarlane, G.T. and Gibson, G.R. (1995) Microbiological aspects of short chain fatty acid production in the large bowel. In: Physiological and Clinical Aspects of Short Chain Fatty Acid Metabolism (Cummings, J.H., Rombeau, J.L. and Sakata, T., Eds.), pp. 87–105. Cambridge University Press, Cambridge.
  • 15
    Smith, E.A. and Macfarlane, G.T. (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: Effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 81, 288302.
  • 16
    Smith, E.A. and Macfarlane, G.T. (1996) Studies on amine production in the human colon: Enumeration of amine forming bacteria and physiological effects of carbohydrate and pH. Anaerobe 2, 285297.
  • 17
    Visek, W.J., Clintron, S.K. and Truex, C.R. (1978) Nutritional and experimental carcinogenesis. Cornell Vet. 68, 339.
  • 18
    Clausen, M.R. and Mortensen, P.B. (1992) Fecal ammonia in patients with adenomatous polyps and cancer of the colon. Nutr. Cancer 18, 175180.
  • 19
    Matsui, T., Matsukawa, Y., Sakai, T., Nakamura, K., Aoike, A. and Kawai, K. (1995) Effect of ammonia on cell-cycle progression of human gastric cancer cells. Eur. J. Gastroenterol. Hepatol. 7, S79S81.
  • 20
    Vince, A.J. (1986) Metabolism of ammonia, urea, and amino acids, and their significance in liver disease. In: Microbial Metabolism in the Digestive Tract (Hill, M.J., Ed.), pp. 83–105. CRC Press, Boca Raton, FL.
  • 21
    Weber, F.L., Banwell, J.G., Fresard, K.M. and Cummings, J.H. (1987) Nitrogen in fecal bacteria, fiber and soluble fractions of patients with cirrhosis: effects of lactulose and lactulose plus neomycin. J. Lab. Clin. Med. 110, 259263.
  • 22
    Cummings, J.H. and Macfarlane, G.T. (1991) The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70, 443459.
  • 23
    Alexander, M. (1965) Most probable number method for microbial populations. In: Methods of Soil Analysis, II (Black, C.A., Ed.), pp. 1467–1472. American Society of Agronomy, Madison, WI.
  • 24
    Balch, W.E., Fox, G.E., Magnum, L.J., Woese, C.R. and Wolf, R.J. (1979) Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43, 260296.
  • 25
    Allison, C. and Macfarlane, G.T. (1988) Effect of nitrate on methane production and fermentation by slurries of human faecal bacteria. J. Gen. Microbiol. 134, 13971405.
  • 26
    Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 143, 265275.
  • 27
    Solorzano, L. (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799801.
  • 28
    Degnan, B.A. and Macfarlane, G.T. (1995) Arabinogalactan utilization in continuous cultures of Bifidobacterium longum: Effect of co-culture with Bacteroides thetaiotaomicron. Anaerobe 1, 103112.
  • 29
    Sheffner, A.L., Kirsner, J.B. and Palmer, W.L. (1948) Studies on amino acid excretion in man II. Amino acids in feces. J. Biol. Chem. 176, 8993.
  • 30
    Wilson, D.R., Ing, T.S., Metcalfe-Gibson, A. and Wrong, O.M. (1968) In vivo dialysis of faeces as a method of stool analysis. III. The effect of intestinal antibiotics. Clin. Sci. 34, 211221.
  • 31
    Cummings, J.H., Stephen, A.M. and Branch, W.J. (1981) Implications of dietary fiber breakdown in the human colon. In: Banbury Report 7: Gastrointestinal Cancer-Endogenous Factors (Bruce, W.R., Correa, P., Lipkin, M., Tannenbaum, S.R. and Wilkins, T.D., Eds.), p. 71. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
  • 32
    Summerskill, W.H.J. and Wolpert, E. (1970) Ammonia metabolism in the gut. Am. J. Clin. Nutr. 23: 633–639.
  • 33
    Chacko, A. and Cummings, J.H. (1988) Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food. Gut 29, 809815.
  • 34
    Cummings, J.H., Hill, M.J., Bone, E.S., Branch, W.J. and Jenkins, D.J.A (1979) The effect of meat protein and dietary fiber on colonic function and metabolism. Part II. Bacterial metabolites in feces and urine. Am. J. Clin. Nutr. 32, 20942101.
  • 35
    Owens, C.W.I. and Padovan, W. (1975) Quantitative method for estimating fecal amino acids. Clin. Chem. 21, 14371440.
  • 36
    Adibi, S.A. and Mercer, D.W. (1973) Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J. Clin. Invest. 52, 15861594.
  • 37
    Padovan, W., Owens, C.W. and Ferguson, R. (1975) Creatinine and amino acid profiles of ileal and fecal fluids. Clin. Sci. Mol. Med. 49, 27P.
  • 38
    Horler, D.F., Westlake, D.W.S. and McConnell, W.B. (1966) Conversion of glutamic acid to volatile acids by Micrococcus aerogenes. Can. J. Microbiol. 12, 4753.
  • 39
    Mead, G.C. (1971) The amino acid fermenting clostridia. J. Gen. Microbiol. 67, 4756.
  • 40
    Whiteley, H.R. (1957) Fermentation of amino acids by Micrococcus aerogenes. J. Bacteriol. 74, 324330.
  • 41
    Anonymous (1990) In: The Oxoid Manual 6th edn. pp. 3–13. Unipath, Basingstoke.
  • 42
    Copper, P.B. and Ling, J.R. (1985) The uptake of peptides and amino acids by rumen bacteria. Proc. Nutr. Soc. 44, 144A.
  • 43
    Ling, J.R. and Armstead, I.P. (1995) The in-vitro uptake and metabolism of peptides and amino-acids by 5 species of rumen bacteria. J. Appl. Bacteriol. 78, 116124.
  • 44
    Vince, A., Dawson, A.M., Park, N. and O'Grady, F.W. (1973) Ammonia production by intestinal bacteria. Gut 14, 171177.
  • 45
    Epps, H.M.R. and Gale, E.F. (1942) The influence of the presence of glucose during growth on the enzymic activities of Escherichia coli: comparison of the effect with that produced by fermentation acids. Biochem. J. 36, 619623.
  • 46
    Magasanik, B. (1961) Catabolite repression. Cold Spring Harbor Symp. Quant. Biol. 26, 249256.
  • 47
    Loesche, W.J. and Gibbons, R.J. (1968) Amino acid fermentation by Fusobacterium nucleatum. Arch. Oral Biol. 13, 191201.
  • 48
    Miles, D.O., Dyer, J.K. and Wong, J.C. (1976) Influence of amino acids on the growth of Bacteroides melaninogenicus. J. Bacteriol. 127, 899903.
  • 49
    Bianchi, G.P., Marchesini, G., Fabbri, A., Rondelli, A., Bugianesi, E., Zoli, M. and Pisi, E. (1993) Vegetable versus animal protein diet in cirrhotic patients with chronic encephalopathy. A randomized cross-over comparison. J. Int. Med. 233, 385392.
  • 50
    Mortensen, P.B., Holtug, K., Bonnen, H. and Clausen, M.R. (1990) The degradation of amino acids, proteins, and blood to short-chain fatty acids in colon is prevented by lactulose. Gastroenterology 98, 353360.
  • 51
    Ito, M., Kimura, M., Deguchi, Y., Miyamori-Watabe, A., Yajima, T. and Kan, T. (1993) Effects of transgalactosylated disaccharides on the human intestinal microflora and their metabolism. J. Nutr. Sci. Vitaminol. 39, 279288.
  • 52
    Englyst, H.N., Hay, S. and Macfarlane, G.T. (1987) Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiol. Ecol. 95, 163171.
  • 53
    Roediger, W.E.W. (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa of man. Gut 21, 793798.
  • 54
    Saissac, R., Raynard, M. and Cohen, G.-N. (1948) Variation du type fermentaire des bactéries anaerobies du groupe de Cl. sporogenes sous l'influence du glucose. Ann. Inst. Pasteur 75, 305309.
  • 55
    Turton, L.J., Drucker, D.B. and Ganguli, L.A. (1983) Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and Peptostreptococcus anaerobius. J. Med. Microbiol. 16, 6167.
  • 56
    Allison, M.J. (1978) Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl. Environ. Microbiol. 35, 872877.
  • 57
    Britz, M.L. and Wilkinson, R.G. (1982) Leucine dissimilation to isovaleric and isocaproic acids by cell suspensions of amino acid fermenting anaerobes: the Stickland reaction revisited. Can. J. Microbiol. 28, 291300.
  • 58
    Barker, H.A. (1961) Fermentation of nitrogenous organic compounds. In: The Bacteria, Vol. 2 (Gunsalus, I.C. and Stannier, R.Y., Eds.), pp. 151–207. Academic Press, London.
  • 59
    Varel, V.H. and Bryant, M.P. (1974) Nutritional features of Bacteroides fragilis. Appl. Microbiol. 30, 781785.
  • 60
    Chen, G., Strobel, H.J., Russell, J.B. and Sniffen, C.J. (1987) Effect of hydrophobicity on utilization of peptides by ruminal bacteria in vitro. Appl. Environ. Microbiol. 53, 20212025.
  • 61
    Yang, C.M.J. and Russell, J.B. (1992) Resistance of proline-containing peptides to ruminal degradation in vitro. Appl. Environ. Microbiol. 58, 39543958.
  • 62
    Alves, R.A., Gleaves, J.T. and Payne, J.W. (1985) The role of outer membrane protein in peptide uptake by Escherichia coli. FEMS Microbiol. Lett. 27, 333338.
  • 63
    Chalupa, W. (1976) Degradation of amino acids by the mixed rumen microbial population. J. Animal Sci. 43, 828834.