SEARCH

SEARCH BY CITATION

References

  • 1
    Beveridge, T.J. (1981) Ultrastructure, chemistry and function of the bacterial cell wall. Int. Rev. Cytol. 72, 229317.
  • 2
    Schultze-Lam, S., Thompson, J.B. and Beveridge, T.J. (1993) Metal ion immobilisation by bacterial surfaces in freshwater environments. Water Pollut. Res. J. Canada 28, 5181.
  • 3
    Beveridge, T.J. and Fyfe, W.S. (1985) Metal fixation by bacterial cell walls. Can. J. Earth Sci. 22, 18931898.
  • 4
    Beveridge, T.J., Meloche, J.D., Fyfe, W.S. and Murray, R.G. (1983) Diagenesis of metals chemically complexed to Bacteria: laboratory formation of metal phosphates, sulfides and organic condensates in artificial sediments. Appl. Environ. Microbiol. 45, 1094- 1108.
  • 5
    Urrutia Mera, M., Kemper, M., Doyle, R. and Beveridge, T.J. (1992) The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls. Appl. Environ. Microbiol. 58, 38373844.
  • 6
    Southam, G. and Beveridge, T.J. (1992) Enumeration of thiobacilli within pH neutral and acidic mine tailings and their role in the development of secondary mineral soil. Appl. Environ. Microbiol. 58, 19041912.
  • 7
    Fortin, D., Davis, B., Southam, G. and Beveridge, T.J. (1995) Biogeochemical phenomena induced by bacteria within sulfidic mine tailings. J. Ind. Microbiol. 14, 178- 185.
  • 8
    Fortin, D., Davis, B. and Beveridge, T.J. (1996) Role of Thiobacillus and sulfate reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiol. Ecol. 21, 1124.
  • 9
    Fortin, D. and Beveridge, T.J. (1997) Microbial sulfate reduction within sulfidic mine tailings, formation of diagentic Fe-sulfides. Geomicrobiol. J. 14, 121.
  • 10
    Kelly, D.P. and Harrison, A.P. (1989) Genus Thiobacillus. In: Bergey's Manual of Systematic Bacteriology, Vol 3. (Staley, J.T., Bryant, M.P., Pfennig, N. and Holt, J.G., Eds.), pp. 1842–1858. Williams and Wilkins, Baltimore, MD.
  • 11
    Postgate, J.R. (1979) The Sulphate Reducing Bacteria. Cambridge University Press, Cambridge.
  • 12
    Konhauser, K.O., Fyfe, W.S., Ferris, F.G. and Beveridge, T.J. (1993) Metal sorption and mineral precipitation by bacteria in two Amazonian river systems, Rio Solimões and Rio Negro, Brazil. Geology 21, 11031106.
  • 13
    Konhauser, K.O., Schultze-Lam, S., Ferris, F.G., Fyfe, W.S., Longstaff, F.J. and Beveridge, T.J. (1994) Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Appl. Environ. Microbiol. 60, 549553.
  • 14
    Schultze-Lam, S., Ferris, F.G., Konhauser, K.O. and Wiese, R.G. (1995) In situ silicification of an Icelandic hot spring microbial mat, implications for microfossil formation. Can. J. Earth Sci. 32, 20212026.
  • 15
    Konhauser, K.O. and Ferris, F.G. (1996) Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: Implications for Precambrian iron formations. Geology 24, 323326.
  • 16
    Ferris, F.G., Fyfe, W.S. and Beveridge, T.J. (1988) Metallic ion binding by Bacillus subtilis, implications for the fossilisation of microorganisms. Geology 16, 149152.
  • 17
    Rinehart, J.S. (1980) Geysers and Geothermal Energy. Springer-Verlag, New York.
  • 18
    Degens, E.T. and Ittekot, I.V. (1982) In situ metal staining of biological membranes in sediments. Nature 298, 262264.
  • 19
    Urrutia-Mera, M. and Beveridge, T.J. (1993) Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. J. Bacteriol. 175, 19361945.
  • 20
    Urrutia, M.M. and Beveridge, T.J. (1994) Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis). Chem. Geol. 116, 261280.
  • 21
    Urrutia, M.M. and Beveridge, T.J. (1995) Formation of short range ordered aluminosilicates in the presence of a bacterial surface (Bacillus subtilis) and organic ligands. Geoderma 65, 149165.
  • 22
    Walker, S.G., Flemming, C.A., Ferris, F.G., Beveridge, T.J. and Bailey, G.W. (1989) Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilise heavy metals from solution. Appl. Environ. Microbiol. 55, 29762984.
  • 23
    Flemming, C.A., Ferris, F.G., Beveridge, T.J. and Bailey, G.W. (1990) Remobilisation of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl. Environ. Microbiol. 56, 31913203.
  • 24
    Burne, R.V. and Moore, L.S. (1987) Microbialites, organosedimentary deposits of benthic microbial communities. Palaios 2, 241254.
  • 25
    Kazmierczak, J. and Kempe, S. (1990) Modern cyanobacterial analogs of palaeozoic stromatoporoids. Science 250, 12441248.
  • 26
    Cox, G., James, J.M., Leggett, E.A. and Osborne, R.A. (1989) Cyanobacterially deposited speleotherms, subaerial stromatolites. Geomicrobiol. J. 7, 245252.
  • 27
    Pentecost, A. (1987) Growth and calcification of the freshwater cyanobacterium Rivularia haematites. Proc. R. Soc. Lond. B 232, 125136.
  • 28
    Pentecost, A. (1988) Growth and calcification of the cyanobacterium Homeothrix crustacea. J. Gen Microbiol. 134, 26652671.
  • 29
    Kennard, J.M. and James, N.P. (1986) Thrombolites and stromatolites. Two distinct types of microbial structures. Palaios 1, 492503.
  • 30
    Thompson, J.B., Ferris, F.G. and Smith, D.A. (1990) Geomicrobiology and sedimentology of the mixolimnion and chemocline in Fayetteville Green Lake, New York. Palaios 5, 5275.
  • 31
    Kempe, S., Kazmierczak, J., Landmann, G., Koruk, T. and Reimer, A. (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature 349, 605608.
  • 32
    Krumbien, W.E. and Giele, C. (1979) Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites. Sedimentology 26, 593604.
  • 33
    Römer, R. and Schwartz, W. (1965) Geomikrobiologische Untersuchungen. V: Verwertung von Sulfatmineralien und Schwermetall-Toleranz bei desulfurizierten Zeit. Für. Allg. Mikrobiol. 5, 122135.
  • 34
    Drew, G.H. (1914) On the precipitation of calcium carbonate in the sea by marine denitrifying bacteria. Carnegie Inst. Wash. Publ. 1825, 945.
  • 35
    Thompson, J.B. and Ferris, F.G. (1990) Cyanobacterial precipitates of gypsum, calcite and magnetite from natural alkaline lake water. Geology 18, 995998.
  • 36
    Schultze-Lam, S., Harauz, G. and Beveridge, T.J. (1992) Participation of a cyanobacterial S-layer in fine grain mineral formation. J. Bacteriol. 174, 79717981.
  • 37
    Brunskill, G.J. and Ludlam, S.D. (1969) Fayetteville Green Lake, New York, physical and chemical limnology. Limnol. Oceanogr. 14, 817829.
  • 38
    Thompson, J.B., Schultze-Lam, S., Beveridge, T.J. and Des Marais, D.J. (1997) Whiting events, biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnol. Oceanogr. 42, 133141.
  • 39
    Schultze-Lam, S. and Beveridge, T.J. (1994) Physicochemical characteristics of the mineral-forming S-layer from the cyanobacterium Synechococcus GL24. Can. J. Microbiol. 40, 216223.
  • 40
    Miller, A.G. and Colman, B. (1980) Evidence for HCO3- transport by the blue-green alga (cyanobacterium) Coccochloris peniocystis. Plant Physiol. 65, 397402.
  • 41
    Miller, A.G., Espie, G.S. and Canvin, D.T. (1990) Physiological aspects of CO2 and HCO3-transport by cyanobacteria. Can. J. Bot. 68, 12911302.
  • 42
    Schultze-Lam, S. (1993) Structural and Chemical Analysis of the Synechococcus GL24 Cell Surface and Its Role in Carbonate Mineral Formation. Ph.D. Thesis, University of Guelph, Guelph, Ont.
  • 43
    Southgate, P.N. (1986) Cambrian phoscrete profiles, coated grains and microbial processes in phosphogenesis, Georgina Basin, Australia. J. Sediment Petrol. 56, 429441.
  • 44
    Soudry, D. and Champtier, Y. (1983) Microbial processes in Negev phosphorites (southern Israel). Sedimentology 30, 411423.
  • 45
    Dahanayabe, K. and Krumbien, W.E. (1985) Ultrastructure of a microbial mat generated phosphorite. Mineral. Depos. 20, 260265.
  • 46
    Vasconcelos, C., McKenzie, S., Bernasconi, S., Grujic, D. and Tien, A.J. (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377, 220222.
  • 47
    Kobluk, D.R. and Crawford, D.R. (1990) A modern hypersaline organic mud and gypsum dominated basin and associated microbiolites. Palaios 5, 134148.
  • 48
    Sillitoe, R.H., Folk, R.L. and Saric, N. (1996) Bacteria as mediators of copper sulfide enrichment during weathering. Science 272, 11531155.
  • 49
    Lyalikova, N.N. and Mokeicheva, L.Y. (1969) The role of bacteria in gold migration deposits. Geokhimiya 38, 805810.
  • 50
    Southam, G. and Beveridge, T.J. (1994) The in vitro formation of placer gold by bacteria. Geochim. Cosmochim. Acta 58, 45274530.