• 1
    Iiyami, K., Lam, T.B.T., Stone, B.A. and Macauley, B.J. (1996) Characterisation of material generated on the surface of wheat straw during composting for mushroom production. J. Sci. Food Agric. 70, 461467.
  • 2
    Straatsma, G., Samson, R.A., Olijnsma, T.W., gerrits, J.P.G., Op Den Camp, H.J.M. and Griensven, L.J.L.D. (1995) Bioconversion of cereal straw into mushroom compost. Can. J. Bot. 73, S1010S1024.
  • 3
    Gajdos, R. (1992) The use of organic waste materials as organic fertilizers – recycling of plant nutrients. Acta Hortic. 302, 325331.
  • 4
    Guidi, G., Pera, A., Giovannetti, M., Poggio, G. and Bertoldi, M. (1988) Variations of soil structure and microbial population in a compost amended soil. Plant Soil 106, 113119.
  • 5
    Fermor, T.R., Randle, P.E. and Smith, J.F. (1985) Compost as a substrate and its preparation. In: The Biology and Technology of the Cultivated Mushroom (Flegg, P.B., Spencer, D.M. and Wood, D.A., Eds.), pp. 81–109. Wiley, New York.
  • 6
    Gouin, F.R. (1991) Standards for horticultural composts. In: The Biocycle Guide to the Art and Science of Composting (Goldstein, J., Ed.), pp. 155–157. J.G. Press, Emmaus, PA.
  • 7
    Szmidt, R.A. (1994) Recycling of spent mushroom substrates by aerobic composting to produce novel horticultural substrates. Compost Sci. 2, 6372.
  • 8
    Verdonck, O., De Boodt, M. and Gabriels, R. (1987) Compost as a growing medium for horticultural plants. In: Compost: Production, Quality and Use (Bertoldi, M.D., Ferranti, M.P., L'Hermite, P. and Zucconi, F., Eds.), pp. 399–405. Elsevier, Amsterdam.
  • 9
    Chang, Y. and Hudson, H.J. (1967) The fungi of wheat straw compost. Trans. Br. Mycol. Soc. 50, 649666.
  • 10
    Diaz-Raviña, M., Acea, M.J. and Carballas, T. (1989) Microbiological characterization of four composted urban refuses. Biol. Wastes 30, 89100.
  • 11
    Finstein, S.M. and Morris, M.L. (1975) Microbiology of municipal solid waste composting. Adv. Appl. Microbiol. 19, 113151.
  • 12
    Golueke, C.G. (1992) Bacteriology of composting. BioCycle 1, 5557.
  • 13
    Strom, P.F. (1985) Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl. Environ. Microbiol. 50, 899905.
  • 14
    Strom, P.F. (1985) Identification of thermophilic bacteria in solid-waste composting. Appl. Environ. Microbiol. 50, 906913.
  • 15
    Tseng, D.Y., Chalmers, J.J. and Tuovinen, O.H. (1996) ATP measurement in compost. Compost Sci. 4, 617.
  • 16
    Derikx, P.J.L., Camp, H.J.M.O., Van der Drift, C., Van Griensven, L.J.L.D. and Vogels, G.D. (1990) Biomass and biological activity during the production of compost used as a substrate in mushroom cultivation. Appl. Environ. Microbiol. 56, 30293034.
  • 17
    Wiegant, W.M. (1991) A simple method to estimate the biomass of thermophilic fungi in composts. Biotech. Tech. 5, 421426.
  • 18
    Insam, H., Amor, K., Renner, M. and Crepaz, C. (1996) Changes in functional abilities of the microbial community during composting of manure. Microb. Ecol. 31, 7787.
  • 19
    Federle, T.W. (1986) Microbial distribution in soil – new techniques. In: Perspectives in Microbial Ecology (Megusar, F. and Gantar, M., Eds.), pp. 493–498. Slovene Society for Microbiology, Ljubljana.
  • 20
    Frostegård, Å. and Bååth, E. (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 5965.
  • 21
    Bååth, E., Frostegård, Å., Pennanen, T. and Fritze, H. (1995) Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol. Biochem. 27, 229240.
  • 22
    Borgå, P., Nilsson, M. and Tunlid, A. (1994) Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 26, 841848.
  • 23
    Frostegård, Å., Bååth, E. and Tunlid, A. (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 25, 723730.
  • 24
    Lehman, R.M., Colwell, F.S., Ringelberg, D.B. and White, D.C. (1995) Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. J. Microbiol. Methods 22, 263281.
  • 25
    Zelles, L., Bai, Q.Y., Rackwitz, R., Chadwick, D. and Beese, F. (1995) Determination of phospholipid- and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structures in soils. Biol. Fertil. Soils 19, 115123.
  • 26
    Hellmann, B., Zelles, L., Palojärvi, A. and Bai, Q. (1997) Emission of climate-relevant trace gases and succession of microbial communities during open-window composting. Appl. Environ. Microbiol. 63, 10111018.
  • 27
    Herrmann, R.F. and Shann, J.F. (1997) Microbial community changes during the composting of municipal solid waste. Microb. Ecol. 33, 7885.
  • 28
    Frostegård, Å., Tunlid, A. and Bååth, E. (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J. Microbiol. Methods 14, 151163.
  • 29
    O'Leary, W.M. and Wilkinson, S.G. (1988) Gram-positive bacteria. In: Microbial Lipids (Ratledge, C. and Wilkinson, S.G., Eds.), pp. 117–201. Academic Press, London.
  • 30
    Nordby, H.E., Nemec, S. and Nagy, S. (1981) Fatty acids and sterols associated with citrus root mycorrhizae. J. Agric. Food Chem. 29, 396401.
  • 31
    Olsson, P.A., Bååth, E., Jakobsen, I. and Söderström, B. (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623629.
  • 32
    Beffa, T., Blanc, M. and Aragno, M. (1996) Obligately and facultatively autotrophic, sulfur- and hydrogen-ozidizing thermophilic bacteria isolated from hot composts. Arch. Microbiol. 165, 3440.
  • 33
    Hedger, J.N. and Basuki, T. (1982) The role of Basidiomycetes in composts: a model system for decomposition studies. In: Decomposer Basidiomycetes (Frankland, J., Hedger, J.N. and Swift, M.J., Eds.), pp. 263–305. Cambridge University Press, Cambridge.
  • 34
    Beffa, T., Blanc, M., Lyon, P.F., Vogt, G., Marchiani, M., Fischer, J.L. and Aragno, M. (1996) Isolation of Thermus strains from hot composts (60 to 80°C). Appl. Environ. Microbiol. 62, 17231727.
  • 35
    Fermor, T.R., Smith, J.F. and Spencer, D.M. (1979) The microflora of experimental mushroom composts. J. Hortic. Sci. 54, 137147.
  • 36
    Hayes, W.A. (1968) Microbiological changes in composting wheat straw/horse manure mixtures. Mushroom Sci. 7, 173186.
  • 37
    Klamer, M. and Sochting, U. (1997) The fungi in a controlled compost system – with special emphasize on thermophilic fungi. Acta Hortic. in press.
  • 38
    Mumma, R.O., Sekura, R.D. and Fergus, C.L. (1971) Thermophilic fungi: II. Fatty acid composition of polar and neutral lipids of thermophilic and mesophilic fungi. Lipids 6, 584588.
  • 39
    Oshima, M. and Miyagawa, A. (1974) Comparative studies on the fatty acid composition of moderately and extremely thermophilic bacteria. Lipids 9, 476480.
  • 40
    Sumner, J.L. and Morgan, E.D. (1969) The fatty acid composition of sporangiospores and vegetative mycelium of temperature-adapted fungi in the order Mucorales. J. Gen. Microbiol. 59, 215221.
  • 41
    Suutari, M., Liukkonen, K. and Laakso, S. (1990) Temperature adaption in yeasts: the role of fatty acids. J. Gen. Microbiol. 136, 14691474.
  • 42
    King, J.D., White, D.C. and Taylor, C.W. (1977) Use of lipid composition and metabolism to examine structure and activity of estuarine detrital microflora. Appl. Environ. Microbiol. 33, 1171183.