• 1
    Edwards, E.A. and Grbic-Galic, D. (1992) Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl. Environ. Microbiol. 58, 26632666.
  • 2
    Kazumi, J., Caldwell, M., Lovley, D.R., Suflita, J. and Young, L.Y. (1997) Anaerobic degradation of benzene in diverse anoxic environments. Environ. Sci. Technol. 31, 813818.
  • 3
    Lovley, D.R., Coates, J.D., Woodward, J.C. and Phillips, E.J.P. (1995) Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol. 61, 953958.
  • 4
    Lovley, D.R., Woodward, J.C. and Chapelle, F.H. (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370, 128131.
  • 5
    Phelps, C.D., Kazumi, J. and Young, L.Y. (1996) Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. FEMS Microbiol. Lett. 145, 433437.
  • 6
    Frazer, A.C., Coschigano, P.W. and Young, L.Y. (1995) Toluene metabolism under anaerobic conditions: A review. Anaerobe 1, 293303.
  • 7
    Harwood, C.S. and Gibson, J. (1997) Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes? J. Bacteriol. 179, 301309.
  • 8
    Vogel, T.M. and Grbic-Galic, D. (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52, 200202.
  • 9
    Weiner, J.M. and Lovley, D.R. (1998) Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 64, 19371939.
  • 10
    Zehnder, J.B. and Stumm, W. (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Biology of Anaerobic Microorganisms (Zehnder, J.B., Ed.). John Wiley and Sons, New York.
  • 11
    Widdel, F. and Bak, F. (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: The Prokaryotes (Balows, A., Truper, H.G., Dworkin, M., Harder, W. and Schleifer, K-H., Eds.), 2nd Edn. Springer-Verlag, New York.
  • 12
    Voordouw, G., Armstrong, S.M., Reimer, M.F., Fouts, B., Telang, A.J., Shen, Y. and Gevertz, D. (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62, 16231629.
  • 13
    Teske, A., Sigalevich, P., Cohen, Y. and Muyzer, G. (1996) Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl. Environ. Microbiol. 62, 42104215.
  • 14
    Kane, M.D., Poulson, L.K. and Stahl, D.A. (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl. Environ. Microbiol. 59, 682686.
  • 15
    Widdel, F. (1980) Ph.D. Thesis. Georg-August-Univ., Göttingen, Germany.
  • 16
    Coschigano, P.W., Häggblom, M.M. and Young, L.Y. (1994) Metabolism of both 4-chloro-benzoate and toluene under denitrifying conditions by a constructed bacterial strain. Appl. Environ. Microbiol. 60, 989995.
  • 17
    Kerkhof, L. and Ward, B.B. (1993) Comparison of nucleic acid hybridization and fluorometry for measurement of the relationship between RNA/DNA ratio and growth rate in a marine bacterium. Appl. Environ. Microbiol. 59, 13031309.
  • 18
    Lane, D.J. (1991) 16S/23S rRNA sequencing. In: Nucleic Acid Techniques in Bacterial Systematics (Stackebrandt, E. and Goodfellow, M., Eds.), pp. 115–175. John Wiley and Sons, New York.
  • 19
    Sambrook, J., Fritsch, E.R. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • 20
    Avaniss-Aghajani, E., Jones, K., Chapman, D. and Brunk, C. (1994) A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences. Biotechniques 17, 144149.
  • 21
    Liu, W.-T., Marsh, T.L., Cheng, H. and Forney, L.J. (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63, 45164522.
  • 22
    Smith, S.W., Overbeek, R., Woese, C.R., Gilbert, W. and Gillevet, P.M. (1994) The Genetic Data Environment: An expandable GUI for multiple sequence analysis. CABIOS 10, 671675.
  • 23
    Olsen, G.J., Matsuda, H. and Overbeek, R. (1994) fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10, 4148.
  • 24
    Taylor, B.F. and Oremland, R.S. (1979) Depletion of adenosine triphosphate in Desulfovibrio by oxyanions of group VI elements. Curr. Microbiol. 3, 101103.
  • 25
    Simoneit, B.R.T., Lonsdale, P.F., Edmond, J.M. and Shanks III, W.C. (1990) Deep-water hydrocarbon seeps in Guaymas Basin, Gulf of California. Appl. Geochem. 5, 4149.
  • 26
    Maidak, B.L., Olsen, G.J., Larsen, N., Overbeek, R., McCaughey, M.J. and Woese, C.R. (1997) The ribosomal database project (RDP). Nucleic Acids Res. 25, 109111.
  • 27
    Widdel, F. (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Biology of Anaerobic Microorganisms (Zehnder, A.J.B., Ed.), pp. 469–585. John Wiley and Sons, New York.
  • 28
    Bak, F. and Widdel, F. (1986) Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch. Microbiol. 146, 177180.
  • 29
    Szewzyk, R. and Pfennig, N. (1987) Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch. Microbiol. 147, 163168.
  • 30
    Beller, H.R., Spormann, A.M., Sharma, P.K., Cole, J.R. and Reinhard, M. (1996) Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl. Environ. Microbiol. 62, 11881196.
  • 31
    Rabus, R., Nordhaus, R., Ludwig, W. and Widdel, F. (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59, 14441451.
  • 32
    Eisenmann, E., Beuerle, J., Sulgar, K., Kroneck, P.H.M. and Schumacher, W. (1995) Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia. Arch. Microbiol. 164, 180185.
  • 33
    Telang, A.J., Ebert, S., Foght, J.M., Westlake, D.W.S., Jenneman, G.E., Gevertz, D. and Voordouw, G. (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl. Environ. Microbiol. 63, 17851793.
  • 34
    Barik, S., Brulla, W.J. and Bryant, M.P. (1985) PA-1, a versatile anaerobe obtained in pure culture, catabolizes benzenoids and other compounds in syntrophy with hydrogenotrophs, and P-2 plus Wolinella sp. degrades benzenoids. Appl. Environ. Microbiol. 50, 304310.
  • 35
    Amann, R.I., Ludwig, W. and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.
  • 36
    Ward, D.M., Weller, R. and Bateson, M.M. (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 6365.
  • 37
    Britschgi, T.B. and Giovannoni, S.J. (1991) Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 57, 17071713.
  • 38
    Liesack, W. and Stackebrandt, E. (1992) Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174, 50725078.
  • 39
    Gray, J.P. and Herwig, R.P. (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 62, 40494059.
  • 40
    Snaidr, J., Amann, R., Huber, I., Ludwig, W. and Schleifer, K-H. (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63, 28842896.
  • 41
    Hiorns, W.D., Methé, B.A., Nierzwicki-Bauer, S.A. and Zehr, J.P. (1997) Bacterial diversity in Adirondack Mountain lakes as revealed by 16S rRNA gene sequences. Appl. Environ. Microbiol. 63, 29572960.
  • 42
    Alard, P., Lantz, O., Sebagh, M., Clavo, C., Weill, D., Chavanel, G., Senik, A. and Charpentier, B. (1993) A versatile ELISA-PCR assay for mRNA quantitation from a few cells. Biotechniques 15, 730737.
  • 43
    Farrelly, V., Rainey, F.A. and Stackebrandt, E. (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61, 27982801.
  • 44
    Reysenbach, A-L., Giver, L., Wickham, G.S. and Pace, N.R. (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58, 34173418.
  • 45
    Suzuki, M.T. and Giovannoni, S.J. (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ Microbiol. 62, 625630.
  • 46
    Dower, W., Miller, J. and Ragsdale, C. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 61276144.
  • 47
    Hanahan, D. (1983) Studies on transformation of E. coli with plasmids. J. Mol. Biol. 166, 557580.
  • 48
    Rabus, R., Fukui, M., Wilkes, H. and Widdel, F. (1996) Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl. Environ. Microbiol. 62, 36053613.
  • 49
    Devereux, R., Delany, M., Widdel, F. and Stahl, D.A. (1989) Natural relationships among sulfate-reducing eubacteria. J. Bacteriol. 171, 66896695.
  • 50
    Ferry, J.G. and Wolfe, R.S. (1976) Anaerobic degradation of benzoate to methane by a microbial consortium. Arch. Microbiol. 107, 3340.
  • 51
    Dean, J.A. (1985) Lange's Handbook of Chemistry, 13th Edn. McGraw-Hill, New York.