• 1
    Norris, P.R. and Johnson, D.B. (1998) Acidophilic microorganisms. In: Extremophiles: Microbial Life in Extreme Environments (Horikoshi, K. and Grant, W.D., Eds.), pp. 133–154. Wiley, New York, NY.
  • 2
    Norris, P.R. and Ingledew, W.J. (1992) Acidophilic bacteria: adaptations and applications. In: Molecular Biology and Biotechnology of Extremophiles (Herbert, R.A. and Sharp, R.J., Eds.), pp. 115–142. Blackie, Glasgow.
  • 3
    Lane, D.J., Harrison, A.P. Jr., Stahl, D., Pace, B., Giovannoni, S.J., Olsen, G.J. and Pace, N.R. (1992) Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J. Bacteriol. 174, 269278.
  • 4
    Blake, R.C. II, Shute, E.A., Waskovsky, J. and Harrison, A.P. Jr. (1992) Respiratory components of bacteria that respire on iron. Geomicrobiol. J. 10, 173192.
  • 5
    Pronk, J.T. and Johnson, D.B. (1992) Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiol. J. 10, 153171.
  • 6
    Rawlings, D.E. (1997) Biomining: Theory, Microbes and Industrial Processes, 302 pp. Springer-Verlag/Landes Bioscience, Georgetown, TX.
  • 7
    Johnson, D.B. (1995) The role of ‘iron bacteria’in the biodegradation of minerals. Biodeterior. Abst. 9, 17.
  • 8
    Sand, W., Gehrke, T., Hallmann, R. and Schippers, A. (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism – a critical evaluation of bacterial leaching. Appl. Microbiol. Biotechnol. 43, 961966.
  • 9
    Evangelou, V.P. (1995) Pyrite Oxidation and its Control, 275 pp. CRC Press, New York, NY.
  • 10
    Leduc, L.G. and Ferroni, G.D. (1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 14, 103120.
  • 11
    Pronk, J.T., Meijer, W.M., Hazeu, W., van Dijken, J.P., Bos, P. and Kuenen, J.G. (1991) Growth of Thiobacillus ferrooxidans on formic acid. Appl. Environ. Microbiol. 57, 20572062.
  • 12
    Gyure, R.A., Konopka, A., Brooks, A. and Doemel, W. (1987) Algal and bacterial activities in acidic (pH 3) strip mine lakes. Appl. Environ. Microbiol. 53, 20692076.
  • 13
    Lopez-Archilla, A.I., Marin, I. and Amils, R. (1995) Microbial ecology of an acidic river: biotechnological applications. In: Biohydrometallurgical Processing II (Vargas, T., Jerez, C.A., Wiertz, J.V. and Toledo, H., Eds.), pp. 63–74. University of Chile, Santiago.
  • 14
    Brock, T.D. (1978) Thermophilic Microorganisms and Life at High Temperatures, 465 pp. Springer-Verlag, New York, NY.
  • 15
    Schleper, C., Puehler, G., Kuhlmorgen, B. and Zillig, W. (1995) Life at extremely low pH. Nature 375, 741742.
  • 16
    Johnson, D.B. and Roberto, F.F. (1997) Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals. In: Biomining: Theory, Microbes and Industrial Processes (Rawlings, D.E., Ed.), pp. 259–280. Springer-Verlag/Landes Bioscience, Georgetown, TX.
  • 17
    Norris, P.R., University of Warwick, UK, personal communication.
  • 18
    Schleper, C., Puehler, G., Kuhlmorgen, B. and Zillig, W. (1995) Life at extremely low pH. Nature 375, 741742.
  • 19
    Johnson, D.B. and Rang, L. (1993) Effects of acidophilic protozoa on populations of metal-mobilising bacteria during the leaching of pyritic coal. J. Gen. Microbiol. 139, 14171423.
  • 20
    Dufresne, S., Bousquet, J., Boissinot, M. and Guay, R. (1996) Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, Gram-positive, spore-forming bacterium. Int. J. Syst. Bacteriol. 46, 10561064.
  • 21
    Berthelot, D., Leduc, L.G. and Ferroni, G.D. (1994) The absence of psychrophilic Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria in cold tailings effluents from a uranium mine. Can. J. Microbiol. 40, 6063.
  • 22
    Langdahl, B.R. and Ingvorsen, K. (1997) Temperature characteristics of bacterial iron solubilisation and 14C assimilation in naturally exposed sulfide ore material at Citronen Fjord, Greenland (83°N). FEMS Microbiol. Ecol. 23, 275283.
  • 23
    Johnson, D.B., McGinness, S. and Ghauri, M.A. (1993) Biogeochemical cycling of iron and sulfur in leaching environments. FEMS Microbiol. Rev. 11, 6370.
  • 24
    Brock, T.D. and Gustafson, J. (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ. Microbiol. 32, 567571.
  • 25
    Pronk, J.T., de Bruyn, J.C., Bos, P. and Kuenen, J.G. (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 58, 22272230.
  • 26
    Bridge, T.A.M. and Johnson, D.B. (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl. Environ. Microbiol. 64, 21812186.
  • 27
    Johnson, D.B. and McGinness, S. (1991) Ferric iron reduction by acidophilic heterotrophic bacteria. Appl. Environ. Microbiol. 57, 207211.
  • 28
    Johnson, D.B., Body, D.A., Bridge, T.A.M., Bruhn, D.F. and Roberto, F.F. (1998) Biodiversity of acidophilic moderate thermophiles isolated from two sites in Yellowstone National Park, and their roles in the dissimilatory oxido-reduction of iron. In: Biodiversity, Ecology and Evolution of Thermophiles in Yellowstone National Park (Reysenbach, A.-L. and Mancinelli, R., Eds.). Plenum Press, New York, NY, in press.
  • 29
    Gyure, R.A., Konopka, A., Brooks, A. and Doemel, W. (1990) Microbial sulfate reduction in acidic (pH 3) strip-mine lakes. FEMS Microbiol. Ecol. 73, 193202.
  • 30
    Hard, B.C. and Babel, F.W. (1997) Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria. Microbiol. Res. 152, 6573.
  • 31
    Segerer, A.H., Neuner, A., Kristjansson, J.K. and Stetter, K.O. (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic, thermophilic sulfur-metabolizing archaebacteria. Int. J. Syst. Bacteriol. 36, 559564.
  • 32
    Segerer, A.H., Langworthy, T.A. and Stetter, K.O. (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst. Appl. Microbiol. 10, 161171.
  • 33
    Segerer, A.H., Trincone, A., Gahrtz, M. and Stetter, K.O. (1991) Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int. J. Syst. Bacteriol. 41, 495501.
  • 34
    Johnson, D.B. and Kelso, W.I. (1981) Extracellular polymers of acid streamers from pyritic mines. Environ. Pollut. 24, 291301.
  • 35
    Norris, P.R., Barr, D.W. and Hinson, D. (1988) Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Biohydrometallurgy: Proceedings of the International Symposium, Warwick 1987 (Norris, P.R. and Kelly, D.P., Eds.), pp. 43–59. Science and Technology Letters, Kew, UK.
  • 36
    Schrenk, M.O., Edwards, K.J., Goodman, R.M., Hamers, R.J. and Banfield, J.F. (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279, 15191521.
  • 37
    Johnson, D.B. (1991) Biological desulfurization of coal using mixed populations of mesophilic and moderately thermophilic acidophilic bacteria. In: Processing and Utilization of High-Sulfur Coals (Dugan, P.R., Quigley, D.R. and Attia, Y.A., Eds.), pp. 567–580. Elsevier, Amsterdam.
  • 38
    McGinness, S. and Johnson, D.B. (1992) Grazing of acidophilic bacteria by a flagellate protozoan. Microbiol. Ecol. 23, 7586.
  • 39
    Hallmann, R., Friedrich, A., Koops, H.-P., Pommerening-Roser, A., Rohde, K., Zenneck, C. and Sand, W. (1992) Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching. Geomicrobiol. J. 10, 193206.
  • 40
    Norris, P.R. (1990) Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Microbial Mineral Recovery (Ehrlich, H.L. and Brierley, C.L., Eds.), pp. 3–27. McGraw-Hill, New York, NY.
  • 41
    Clark, D.A. and Norris, P.R. (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 141, 785790.