SEARCH

SEARCH BY CITATION

Keywords:

  • Methanogen;
  • Rumen protozoon;
  • Symbiosis;
  • Phylogeny;
  • rRNA

Abstract

Methanogen populations in the rumen and in model rumen systems (operated over a 240-h period) were studied using the small subunit (SSU) rRNA phylogenetic framework for group-specific enumerations. Representatives of the family Methanobacteriaceae were the most abundant methanogen population in the rumen, accounting for 89.3% (± 1.02%) of total archaea in the rumen fluid and 99.2% (± 1.8%) in a protozoal fraction of rumen fluid. Their percentage of archaea in the model rumen systems declined from 84% (± 8.5%) to 54% (± 7.8%) after 48 h of operation, correlated with loss of protozoa from these systems. The Methanomicrobiales, encompassed by the families Methanomicrobiaceae, Methanocorpusculaceae, and Methanospirillaceae were the second most abundant population and accounted for 12.1% (± 2.15%) of total SSU rRNA in rumen fluid. Additionally this group was shown to be essentially free living, since only a negligible hybridization signal was detected with the ruminal protozoal fraction. This group constituted a more significant proportion of total archaea in whole rumen fluid, 12.1% (± 2.1%) and model rumen fluid containing no protozoa (26.3 ± 7.7%). In contrast, the Methanosarcinales, generally considered the second most abundant population of rumen methanogens, accounted for only 2.8% (± 0.3%) of total archaeal SSU rRNA in rumen fluid.