• 1
    Iversen, N. and Joergensen, B.B. (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30, 944955.
  • 2
    Damgaard, L.A. and Revsbech, N.P. (1997) A microscale biosensor for methane containing methanotrophic bacteria and an internal oxygen reservoir. Anal. Chem. 69, 22622267.
  • 3
    Frenzel, P., Rothfuss, F. and Conrad, R. (1992) Oxygen profiles and methane turnover in a flooded rice microcosm. Biol. Fert. Soil 14, 8489.
  • 4
    Frenzel, P., Thebrath, B. and Conrad, R. (1990) Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). FEMS Microbiol. Ecol. 73, 149158.
  • 5
    Bosse, U. and Frenzel, P. (1997) Activity and distribution of CH4 oxidizing bacteria in flooded rice microcosms and in rice plants (Oryza sativa). Appl. Environ. Microbiol. 63, 11991207.
  • 6
    Gilbert, B. and Frenzel, P. (1995) Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Biol. Fert. Soils 20, 93100.
  • 7
    King, G.M. (1994) Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl. Environ. Microbiol. 60, 32203227.
  • 8
    Armstrong, W. (1970) Rhizosphere oxidation in rice and other species: a mathematical model based on the oxygen flux component. Physiol. Plant 23, 623630.
  • 9
    Arth, I., Frenzel, P. and Conrad, R. (1998) Denitrification coupled to nitrification in the rhizosphere of rice. Soil Biol. Biochem. 30, 509515.
  • 10
    Armitage, P., Cranston, P.S. and Pinder, L.C.V. (1995) The Chironomidae. The Biology and Ecology of Non-Biting Midges. Chapman and Hall, London.
  • 11
    Thienemann, A. (1954) Chironomus. Schweizerbarth, Stuttgart.
  • 12
    Hodkinson, D.I. and Williams, K.A. (1980) Tube formation and distribution of Chironomus plumosus L. (Diptera: Chironomidae) in a eutrophic woodland pond. In: Chironomidae (Murray, D.A., Ed.), pp. 331–337. Franklin, Oxford.
  • 13
    McLachlan, A.J. and Cantrell, M.A. (1976) Sediment development and its influence on the distribution and tube structure of Chironomus plumosus L. (Chironomidae, Diptera) in a new impoundment. Freshwater Biol. 6, 437443.
  • 14
    Tatrai, I. (1986) Rates of ammonia release from sediments by chironomid larvae. Freshwater Biol. 16, 6166.
  • 15
    Frenzel, P. (1990) The influence of chironomid larvae on sediment oxygen microprofiles. Arch. Hydrobiol. 119, 427437.
  • 16
    Conrad, R. and Rothfuss, F. (1991) Methane oxidation in the soil surface layer of a flooded ride field and the effect of ammonium. Biol. Fertil. Soils 12, 2832.
  • 17
    Holzapfel-Pschorn, A., Conrad, R. and Seiler, W. (1985) Production, oxidation and emission of methane in rice paddies. FEMS Microbiol. Ecol. 31, 343351.
  • 18
    Schütz, H., Holzapfel-Pschorrn, A., Conrad, R., Rennenberg, H. and Seiler, W. (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. 94, 1640516416.
  • 19
    Lindberg, B. and Wiederholm, T. (1979) Notes on the taxonomy of European species of Chironomus (Diptera: Chironomidae). In: Recent development in chironomid studies (Diptera: Chironomidae) (Saether O.A., Eds.), pp. 99–116. Entom. Scand., Suppl.
  • 20
    Strenzke, K. (1959) Revision der Gattung Chironomus Meig. 1. Imagines von 15 norddeutschen Arten und Unterarten. Arch. Hydrobiol. 56, 142.
  • 21
    Webb, C.J. and Scholl, A. (1985) Identification of larvae of European species of Chironomus Meigen (Diptera: Chironomidae) by morphological characters. Syst. Entomol. 10, 353372.
  • 22
    Keyl, H.-G. and Keyl, I. (1959) Die cytologische Charakteristik der Chironomiden. I. Bestimmungstabelle für die Gattung Chironomus auf Grund der Speicheldrüsen-Chromosomen. Arch. Hydrobiol. 56, 4357.
  • 23
    Keyl, H.-G. and Strenzke, K. (1956) Taxonomie und Zytologie von zwei Subspezies der Art Chironomus thummi. Z. Naturforsch. 11b, 727–735.
  • 24
    Keyl, H.-G. (1961) Die cytologische Charakteristik der Chironomiden. III. Diagnose von Chironomus parathummi n. sp. und Ergänzungen zur Bestimmungstabelle. Arch. Hydrobiol. 58, 16.
  • 25
    Reiss, F. (1968) Ökologische und systematische Untersuchungen an Chironomiden (Diptera) des Bodensees. Arch. Hydrobiol. 61, 176246.
  • 26
    Rothfuss, F. and Conrad, R. (1994) Development of a gas diffusion probe for the determination of methane concentrations and diffusion characteristics in flooded paddy soil. FEMS Microbiol. Ecol. 14, 307318.
  • 27
    Rothfuss, F., Frenzel, P. and Conrad, R. (1994) Gas diffusion probe for measurement of CH4 gradients. In: Microbial mats (Stal L.J. and Caumette P., Eds.), pp. 167–172. NATO ASI Series, Vol. G 35.
  • 28
    Lerman, A. (1979) Geochemical Processes. Water and Sediment Environments. Wiley, New York.
  • 29
    Ullmann, W.J. and Aller, R.C. (1982) Diffusion coefficient in nearshore marine sediments. Limnol. Oceanogr. 27, 552556.
  • 30
    Rowe, R., Todd, R. and Waide, J. (1977) Microtechnique for most-probable-number analysis. Appl. Environ. Microbiol. 33, 675680.
  • 31
    Whittenbury, R., Philips, K.C. and Wilkinson, J.F. (1970) Enrichment, isolation, and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61, 205218.
  • 32
    Widdel, F. and Bak, F. (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: The Procaryotes (Balows, H., Trüper, H.G., Dworkin, M., Harde, W. and Schleifer, K.H., Eds.), pp. 3352–3378. Springer, New York.
  • 33
    Cochran, W.G. (1950) Estimation of bacterial densities by means of the ‘most probable number’. Biometrics 6, 105116.
  • 34
    Frenzel, P. and Bosse, U. (1996) Methyl fluoride, an inhibitor of methane oxidation and methane production. FEMS Microbiol. Ecol. 21, 2536.
  • 35
    Rothfuss, F. and Conrad, R., Effects of gas bubbles on the diffusional flux of CH4 from anoxic paddy soil. Limnol. Oceanogr., in press.
  • 36
    Granéli, W. (1979) The influence of Chironomus plumosus larvae on the oxygen uptake of sediment. Arch. Hydrobiol. 87, 385403.
  • 37
    Svensson, J.M. (1997) Influence of Chironomus plumosus larvae on ammonium flux and denitrification (measured by the acetylene blockage- and the isotope pairing-technique) in eutrophic lake sediment. Hydrobiologia 346, 157168.
  • 38
    Fukuhara, H. and Sakamoto, M. (1987) Enhancement of inorganic nitrogen and phosphate release from lake sediment by tubificid worms and chironomid larvae. Oikos 48, 312320.
  • 39
    Gallep, G.W., Kitchell, J.F. and Barte, S.M. (1978) Phosphorus release from lake sediments as affected by chironomids. Verh. Internat. Verein. Limnol. 20, 458465.
  • 40
    Bosse, U., Frenzel, P. and Conrad, R. (1993) Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. FEMS Microbiol. Ecol. 13, 123134.
  • 41
    King, G.M., Roslev, P. and Skovgaard, H. (1990) Distribution and rate of methane oxidation in sediments of the Florida Everglades. Appl. Environ. Microbiol. 56, 29022911.
  • 42
    Heinis, F., Sweerts, J.P. and Loopik, E. (1994) Micro-environment of chironomid larvae in the littoral and profundal zones of Lake Maarsseveen I, The Netherlands. Arch. Hydrobiol. 130, 5367.
  • 43
    Whalen, S.C., Reeburgh, W.S. and Sandbeck, K.A. (1990) Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 56, 34053411.
  • 44
    Belser, L.W. and Mays, E.L. (1982) Use of nitrifier activity measurements to estimate the efficiency of viable nitrifier counts in soils and sediments. Appl. Environ. Microbiol. 43, 945948.
  • 45
    Roslev, P. and King, G.M. (1994) Survival and recovery of methanotrophic bacteria starved under oxic and anoxic conditions. Appl. Environ. Microbiol. 60, 26022608.
  • 46
    Rothfuss, F., Bender, M. and Conrad, R. (1997) Survival and activity of bacteria in a deep, aged lake sediment (Lake Constance). Microb. Ecol. 33, 6977.
  • 47
    Stein, L.Y. and Arp, D.J. (1998) Ammonium limitation results in the loss of ammonia-oxidizing activity in Nitrosomonas europaea. Appl. Environ. Microbiol. 64, 15141521.
  • 48
    Achtnich, C., Bak, F. and Conrad, R. (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers and methanogens in anoxic paddy soil. Biol. Fertil. Soils 19, 6572.
  • 49
    Frenzel, P., Bosse, U. and Janssen, P.H. (1999) Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biol. Biochem. (in press).
  • 50
    Leuchs, H. and Neumann, D. (1990) Tube texture, spinning and feeding behaviour of Chironomus larvae. Zool. Jb. Syst. 117, 3140.
  • 51
    Peters, V. and Conrad, R. (1995) Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl. Environ. Microbiol. 61, 16731676.
  • 52
    Wind, T. and Conrad, R. (1995) Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbiol. Ecol. 18, 257266.
  • 53
    Wind, T. and Conrad, R. (1997) Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37, 253278.
  • 54
    Leuchs, H. (1986) Die Schlaengelaktivität von Chironomuslarven (Diptera) aus flachen und tiefen Gewässern und die resultierenden Wasserzirkulationen in Abhängigkeit von Temperatur und Sauerstoffangebot. Arch. Hydrobiol. 108, 281299.