• [1]
    Read, D.J. (1984) The structure and function of the vegetative mycelium of the mycorrhizal roots. In: Symposium of British Mycological Society. The Ecology and Physiology of the Fungal Mycelium (Jennings, D.H. and Rayner, A.D.M., Eds.), pp. 215–239. Cambridge University Press, Cambridge.
  • [2]
    Smith, S.E. and Read, D.J. (1997) Mycorrhizal Symbiosis, 2nd edn. Academic Press, San Diego, CA.
  • [3]
    Gazey, C., Abbott, L.K., Robson, A.D. (1992) The rate of development of mycorrhizas affects the onset of sporulation and production of external hyphae by two species of Acaulospora. Mycol. Res. 96, 643650.
  • [4]
    Jakobsen, I., Rosendahl, I.L. (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber roots. New Phytol. 115, 7783.
  • [5]
    Miller, R.M., Reinhardt, D.R., Jastrow, J.D. (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103, 1723.
  • [6]
    Trent, J.D., Svejcar, T.J., Blank, R.R. (1994) Mycorrhizal colonization, hyphal lengths, and soil moisture associated with two Artemisia tridentata subspecies. Great Basin Nat. 54, 291300.
  • [7]
    Söderström, B.E. (1977) Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol. Biochem. 9, 5963.
  • [8]
    Sylvia, D.M. (1988) Activity of external hyphae of vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 20, 3943.
  • [9]
    Sylvia, D.M. (1992) Quantification of external hyphae of vesicular-arbuscular mycorrhizal fungi. Methods Microbiol. 24, 5365.
  • [10]
    Ekblad, A., Wallander, H., Näsholm, T. (1998) Chitin and ergosterol combined to measure total and living fungal biomass in ectomycorrhizas. New Phytol. 138, 143149.
  • [11]
    Bethlenfalvay, G.J., Ames, R.N. (1987) Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc. Am. J. 51, 834837.
  • [12]
    Frey, B., Vilarino, A., Schüepp, H., Arines, J. (1994) Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol. Biochem. 26, 711717.
  • [13]
    Olsson, P.A., Bååth, E., Jakobsen, I., Söderström, B. (1996) Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 28, 463470.
  • [14]
    Olsson, P.A., Francis, R., Read, D.J., Söderström, B. (1998) Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interactions with other soil microorganisms as estimated by measurement of specific fatty acids. Plant Soil 201, 916.
  • [15]
    Federle, T.W., Dobbins, D.C., Thornton-Manning, J.R., Jones, D.D. (1986) Microbial biomass, activity, and community structure in subsurface soils. Ground Water 24, 365374.
  • [16]
    White, D.C., Stair, J.O., Ringelberg, D.B. (1997) Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J. Ind. Microbiol. 17, 185196.
  • [17]
    Bååth, E., Frostegård, Å., Diaz-Ravina, M., Tunlid, A. (1998) Microbial community-based measurements to estimate heavy metal effects in soil. Ambio 27, 5861.
  • [18]
    Tunlid, A. and White, D.C. (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Soil Biochemistry, Vol. 7 (Stotzky, G. and Bollag, J.-M., Eds.), pp. 229–262. Marcel Dekker, New York.
  • [19]
    Schnürer, J., Clarholm, M., Rosswall, T. (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol. Biochem. 17, 611618.
  • [20]
    White, D.C., Davis, W.M., Nickels, J.S., King, J.D., Bobbie, R.J. (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40, 5162.
  • [21]
    Tunlid, A. and White, D.C. (1990) Use of lipid biomarkers in environmental samples. In: Analytical Microbiology Methods (Fox, A. et al., Eds.), pp. 259–274. Plenum Press, New York.
  • [22]
    Beilby, J.P. (1980) Fatty acid and sterol composition of ungerminated spores of the vesicular-arbuscular mycorrhizal fungus, Acaulospora laevis. Lipids 15, 949952.
  • [23]
    Nordby, H.E., Nemec, S., Nagy, S. (1981) Fatty acid and sterols associated with Citrus root mycorrhizae. J. Agric. Food Chem. 29, 396401.
  • [24]
    Pacovsky, R.S., Fuller, G. (1988) Mineral and lipid composition of Glycine-Glomus-Bradyrhizobium symbioses. Physiol. Plant. 72, 733746.
  • [25]
    Müller, M.M., Kantola, R., Kitunen, V. (1994) Combining sterol and fatty acid profiles for the characterization of fungi. Mycol. Res. 98, 593603.
  • [26]
    Olsson, P.A., Bååth, E., Jakobsen, I., Söderström, B. (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal mycelium in soil. Mycol. Res. 99, 623629.
  • [27]
    Graham, J.H., Hodge, N.C., Morton, J.B. (1995) Fatty acid methyl ester profiles for characterization of Glomalean fungi and their endomycorrhizae. Appl. Environ. Microbiol. 61, 5864.
  • [28]
    Johansen, A., Finlay, R.D., Olsson, P.A. (1996) Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133, 705712.
  • [29]
    Lechevalier, H. and Lechevalier, M.P. (1988) Chemotaxonomic use of lipids – an overview. In: Microbial Lipids, Vol. 1 (Ratledge, C. and Wilkinson, S.G., Eds.), pp. 869–902. Academic Press, San Diego, CA.
  • [30]
    Federle, T.W. (1986) Microbial distribution in soil – New techniques. In: Perspectives in Microbial Ecology (Megusar, F. and Gantar, M., Eds.), pp. 493–498. Slovene Society for Microbiology, Ljubljana.
  • [31]
    Olsson, P.A., Bååth, E., Jakobsen, I. (1997) Phosphorus effects on mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by fatty acid signatures. Appl. Environ. Microbiol. 63, 35313538.
  • [32]
    Green, H., Larsen, J., Olsson, P.A., Funck Jensen, D. and Jakobsen, I. (1999) Suppression of the biocontrol agent Trichoderma harzianum by external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl. Environ. Microbiol. (in press).
  • [33]
    Nadian, H., Smith, S.E., Alston, A.M., Murray, R.S., Siebert, B.D. (1998) Effects of soil compaction on phosphorus uptake and growth of Trifolium subterraneum colonized by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol. 139, 155165.
  • [34]
    Cooper, K., Lösel, D. (1978) Lipid physiology of VA mycorrhiza. I. Composition of lipids in roots of onion, clover and ryegrass infected with Glomus mosseae. New Phytol. 80, 143151.
  • [35]
    Nagy, S., Nordby, H.E., Nemec, S. (1980) Composition of lipids in roots of six citrus cultivars infected with the vesicular arbuscular mycorrhizal fungus Glomus mosseae. New Phytol. 85, 377384.
  • [36]
    Jasper, D.A., Robson, A.D., Abbott, L.K. (1979) Phosphorus and the formation of VAM. Appl. Environ. Microbiol. 11, 501505.
  • [37]
    Eissenstat, D.M., Graham, J.H., Syvertsen, J.P., Drouillard, D.L. (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann. Bot. 71, 110.
  • [38]
    Graham, J.H., Duncan, L.W., Eissenstat, D.M. (1997) Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytol. 135, 335343.
  • [39]
    Ravnskov, S., Larsen, J., Olsson, P.A., Jakobsen, I. (1999) Effects of various organic compounds on growth and P uptake of an arbuscular mycorrhizal fungus. New Phytol. 141, 517524.
  • [40]
    Olsson, P.A., Wallander, H. (1998) Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol. Ecol. 27, 195205.
  • [41]
    Frostegård, Å., Bååth, E. (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 5965.
  • [42]
    Nylund, J.-E. and Wallander, H. (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomass. In: Methods in Microbiology, Vol. 24: Techniques for the Study of Mycorrhiza (Norris, J.R., Read, D.J. and Varma, A.K., Eds.), pp. 77–88. Academic Press, London.
  • [43]
    Olsson, P.A., Chalot, M., Bååth, E., Finlay, R.D., Söderström, B. (1996) Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiol. Ecol. 21, 7786.
  • [44]
    Weete, J.D. and Gandhi, S.R. (1996) Biochemistry and molecular biology of fungal sterols. In: The Mycota. III. Biochemistry and Molecular Biology. Springer, Berlin.
  • [45]
    Melhuish, J.H., Hacskaylo, E. (1980) Fatty-acid content of Pisolithus tinctorius in response to changing ratios of nitrogen and carbon source. Mycologia 72, 10411044.
  • [46]
    Wallander, H. and Wickman, T. (1999) Biotite or microcline as potassium source in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza (in press).
  • [47]
    Dehne, H.W. (1982) Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72, 11151119.
  • [48]
    Larsen, J., Olsson, P.A., Jakobsen, I. (1998) Mycelial interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the saprophytic fungus Fusarium culmorum in root-free soil studied by the use of fatty acid signatures. Mycol. Res. 102, 14911496.
  • [49]
    Tunlid, A., Hoitink, H.A.C., Low, C., White, D.C. (1989) Characterization of bacteria that suppress Rhizoctonia damping off in bark compost media by analysis of fatty acid biomarkers. Appl. Environ. Microbiol. 55, 13681374.