• [1]
    R.Y Morita (1975) Psychrophilic bacteria. Bacteriol. Rev. 39 144167.
  • [2]
    Morita, R.Y. and Buck, G.E. (1974) Low temperature inhibition of substrate uptake. In: Effects of the Ocean Environment on Microbial Activities (Colwell, R.R. and Morita, R.Y., Eds.), pp. 124–129. University Park Press, Baltimore, MD.
  • [3]
    Russell, N.J (1990) Cold adaptation of microorganisms. Phil. Trans. R. Soc. Lond. B 326, 595611.
  • [4]
    Russell, N.J. (1992) Psychrophilic microorganisms. In: Molecular Biology and Biotechnology of Extremophiles (Herbert, R.A. and Sharp, R.S., Eds.), pp. 203–224. Blackie, Glasgow.
  • [5]
    Russell, N.J, Fukunaga, N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol. Rev. 75, 171182.
  • [6]
    Marr, A.G, Ingraham, J.L (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bacteriol. 84, 12601267.
  • [7]
    Bhakoo, M, Herbert, R.A (1979) The effects of temperature on the fatty acid and phospholipid composition of four obligately psychrophilic Vibrio spp. Arch. Microbiol. 121, 121127.
  • [8]
    Bhakoo, M, Herbert, R.A (1980) Fatty acids and phospholipid composition of five psychrotrophic Pseudomonas spp. grown at different temperatures. Arch. Microbiol. 121, 121127.
  • [9]
    Suutari, M, Laakso, S (1993) Effect of growth temperature on the fatty acid composition of Mycobacterium phlei. Arch. Microbiol. 159, 119123.
  • [10]
    Sinensky, M (1974) Homeoviscous adaptation: a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 522525.
  • [11]
    Quinn, P.J. (1988) Effects of temperature on cell membranes. In: Plants and Temperature (Long, S.P. and Woodward, F.I., Eds.), Symposium of the Society for Experimental Biology, Vol. 42, pp. 237–258. Company of Biologists, Cambridge.
  • [12]
    Williams, W.P (1990) Cold induced lipid phase transitions. Phil. Trans. R. Soc. Lond. B 326, 555570.
  • [13]
    McElhaney, (1982) Effects of membrane lipids on transport and enzymic activities. Curr. Topics Membr. Transp. 17, 317380.
  • [14]
    Nedwell, D.B. and Gray, T.R.G. (1987) Soils and sediments as matrices for microbial growth. Symposium of the Society for General Microbiology, Vol. 40, pp. 21–54. Cambridge University Press, Cambridge.
  • [15]
    Overath, P, Schairer, H.V, Stoffel, W (1970) Correlation of the in vitro and in vivo phase transitions of membrane lipids in E. coli. Proc. Natl. Acad. Sci. USA 67, 606612.
  • [16]
    Baldassare, J.J, Brenckle, G.M, Hoffman, M, Silbert, D.F (1977) Modification of membrane lipid: functional properties of membrane in relation to fatty acid structure. J. Biol. Chem. 252, 87978803.
  • [17]
    Gottschal, J.C (1985) Some reflections on microbial competitiveness among heterotrophic bacteria. Antonie van Leeuwenhoek 51, 473494.
  • [18]
    Ellis-Evans, J.C. and Wynn-Williams, D.D. (1985) The interaction of soil and lake microflora at Signy Island. In: Antarctic Nutrient Cycles (Siegfried, W.R., Condy, P.R. and Laws, R.M., Eds.), pp. 662–668. Springer-Verlag, Berlin.
  • [19]
    Mechling, J.A, Kilham, S.S (1983) Temperature effects on silicon limited growth of the Lake Michigan diatom Stephanodiscus minutus (Bacillariophyceae). J. Phycol. 18, 119205.
  • [20]
    Button, D.K (1986) Affinity of organisms for substrate. Limnol. Oceanogr. 31, 453456.
  • [21]
    Button, D.K (1993) Nutrient-limited microbial growth kinetics: overview and recent advances. Antonie van Leeuwenhoek 63, 225235.
  • [22]
    Nedwell, D.B, Rutter, M (1994) Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: low temperature diminishes affinity for substrate uptake. Appl. Environ. Microbiol. 60, 19841992.
  • [23]
    Topiwala, H, Sinclair, C.G (1971) Temperature relationships in continuous culture. Biotechnol. Bioeng. 13, 795813.
  • [24]
    Herbert, R.A, Bell, C.R (1977) Growth characteristics of an obligately psychrophilic Vibrio sp. Arch. Microbiol. 113, 215220.
  • [25]
    Ogilvie, B.G, Rutter, M, Nedwell, D.B (1997) Selection by temperature of nitrate-reducing bacteria from estuarine sediments: species composition and competition for nitrate. FEMS Microbiol. Ecol. 23, 1122.
  • [26]
    Pomeroy, L.M, Wiebe, W.J, Deibel, D, Thompson, R.J, Rowe, G.T, Pakulski, J.D (1991) Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Progr. Ser. 75, 143159.
  • [27]
    Wiebe, W.J W.M Sheldon Jr. Pomeroy, L.R (1992) Bacterial growth in the cold: evidence for an enhanced substrate requirement. Appl. Environ. Microbiol. 58, 359364.
  • [28]
    Wiebe, W.J W.M Sheldon Jr. Pomeroy, L.R (1993) Evidence for enhanced substrate requirement by marine mesophilic bacterial isolates at minimal growth temperatures. Microb. Ecol. 25, 151159.
  • [29]
    Priscu, J.C, Palmisano, A.C, Priscu, L.R, Sullivan, C.W (1989) Temperature dependence of inorganic nitrogen uptake and assimilation in Antarctic sea ice microalgae. Polar Biol. 9, 443446.
  • [30]
    Reay, D.S. (1998) Temperature Dependence of Inorganic Nitrogen Utilisation by Bacteria and Microalgae. Unpublished Ph.D. Thesis, University of Essex, Colchester.
  • [31]
    Reay, D.S., Nedwell, D.B., Priddle, J.C. and Ellis-Evans, J.C. (1999) Temperature dependence of inorganic nitrogen utilisation: I reduced affinity for nitrate at sub-optimal temperatures in a range of algae and bacteria, and implications for production in polar regions. Appl. Environ. Microbiol. (in press).
  • [32]
    Macduff, J.H, Jackson, S.B (1991) Growth and preferences for ammonium or nitrate uptake by barley in relation to root temperature. J. Exp. Bot. 42, 521530.
  • [33]
    Cruz, C, Lips, S.H, Martins-Loução, M.A (1993) Uptake of ammonium and nitrate by carob (Ceratonia siliqua) as affected by root temperature and inhibitors. Physiol. Plant. 89, 532543.
  • [34]
    Tsukagoshi, N, Fox, C.D (1973) Transport system assembly and the mobility of membrane lipids in Escherichia coli. Biochemistry 12, 28222829.
  • [35]
    Foot, M, Jeffcoat, R, Barratt, M.D, Russell, N.J (1983) The effect of growth temperature on the membrane lipid environment of the psychrophilic bacterium Micrococcus cryophilus. Arch. Biochem. Biophys. 224, 718727.
  • [36]
    McGibbon, L, Cossins, A.R, Quinn, P.J, Russell, N.J (1985) A differential scanning calorimeter and fluorescence polarisation study of membrane lipid fluidity in a psychrophilic bacterium. Biochim. Biophys. Acta 820, 115121.
  • [37]
    Upton, A.C. (1988) Comparative Physiological Adaptation of Selected Antarctic Microbial Communities to Low Temperature. Ph.D. Thesis, University of Essex, Colchester.
  • [38]
    Baldassare, J.J, Rhinehart, K.B, Silbert, D.F (1976) Modification of membrane lipids: physical properties in relation to fatty acid structure. Biochemistry 15, 29862994.
  • [39]
    Olson, R.J (1980) Nitrate and ammonium uptake in Antarctic waters. Limnol. Oceanogr. 25, 10641074.
  • [40]
    Glibert, P.M, Biggs, D.C, McCarthy, J.J (1982) Utilization of ammonium and nitrate during austral summer in the Scotia Sea. Deep Sea Res. 29, 837850.
  • [41]
    Martin, J.H, Gordon, R.M, Fitzwater, S.E (1990) Iron in Antarctic waters. Nature 345, 156158.
  • [42]
    Raven, J.A (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol. 109, 279287.
  • [43]
    Maldonado, M.T, Price, N.M (1996) Influence of N substrate on Fe requirements of marine centric diatoms. Mar. Ecol. Progr. Ser. 141, 161172.
  • [44]
    Raven, J.A, Wollenweber, B, Handley, L.L (1993) The quantitative role of ammonia/ammonium transport and metabolism by plants in the global nitrogen cycle. Physiol. Plant. 89, 512518.
  • [45]
    Stapleford, L.S, Smith, R.E.H (1996) The interactive effects of temperature and silicon limitation on the psychrophilic ice diatom Pseudonitzschia seriata. Polar Biol. 16, 589594.
  • [46]
    Ahlgren, G (1987) Temperature functions in biology and their application to algal growth constants. Oikos 49, 177190.
  • [47]
    Rhee, G.-Y, Gotham, I.J (1981) The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26, 635648.
  • [48]
    Broecker, W.S. and Peng, T.-H. (1993) What caused the glacial to interglacial CO2 change? In: The Global Carbon Cycle (Heimann, M., Ed.), pp. 95–115. Springer-Verlag, Berlin.
  • [49]
    Codispoti, L.A. (1989) Phosphorus versus nitrogen limitation of new and export production. In: Productivity of the Oceans: Present and Past (Berger, W.H., Smetacek, V.S. and Wefer, G., Eds.), pp. 377–395. Wiley, New York.
  • [50]
    Ganeshram, R.S, Pedersen, T.F, Calvert, S.E, Murray, J.W (1995) Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature 31, 755758.