• [1]
    Giller, K.E., Witter, E., McGrath, S.P. (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem. 30, 13891414.
  • [2]
    Wuertz, S. and Mergeay, M. (1997) The impact of heavy metals on soil microbial communities and their activities. In: Modern Soil Microbiology (van Elsas, J.D., Trevors, J.T. and Wellington, E.M.H., Eds.), pp. 607–642. Marcel Dekker, Inc., New-York.
  • [3]
    Bååth, E., Frostegård, A., Diaz-Ravina, M., Tunlid, A. (1998) Microbial community-based measurements to estimate heavy metal effects in soil. Ambio. 27, 5861.
  • [4]
    Smit, E., Leeflang, P., Wernars, K. (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol. Ecol. 23, 249261.
  • [5]
    Bååth, E., Diaz-Ravina, M., Frostegård, A., Campbell, C.D. (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl. Environ. Microbiol. 64, 238245.
  • [6]
    Barkay, T., Turner, R.R., Saouter, E., Horn, J. (1992) Mercury biotransformations and their potential for bioremediation of mercury contamination. Biodegradation 3, 147159.
  • [7]
    Doelman, P., Jansen, E., Michels, M., van Til, M. (1994) Effects of heavy metals in soil microbial diversity and activity as shown by the sensitivity-resistance index an ecologically relevant parameter. Biol. Fertil. Soils. 17, 177184.
  • [8]
    Doelman, P., Haanstra, L. (1984) Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant Soil 79, 317327.
  • [9]
    Zelles, L., Scheunert, I., Korte, F. (1986) Comparison of methods to test chemicals for side effects on soil microorganisms. Ecotoxicol. Environ. Saf. 12, 5369.
  • [10]
    Chandler, K., Brookes, P.C. (1991) Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and a silty loam UK soil. Soil Biol. Biochem. 23, 927932.
  • [11]
    Ranjard, L., Richaume, A., Jocteur Monrozier, L., Nazaret, S. (1997) Response of soil bacteria to Hg(II) in relation to soil characteristics and cell location. FEMS Microbiol. Ecol. 24, 321331.
  • [12]
    Babich, H., Stotzky, G. (1980) Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. CRC Crit. Rev. Microbiol. 8, 99145.
  • [13]
    Klein, D.A. and Thayer, J.S. (1992) Interactions between soil microbial communities and organometallic compounds. In: Soil Biochemistry (Stotzky, G. and Bollag, J.M., Eds.), pp. 431–481. vol. 6, Marcel Dekker Inc., New York.
  • [14]
    Alloway, B.J. (1995) Soil processes and the behaviour of metals. In: Heavy Metals in Soils (Alloway, B.J., Ed.), pp. 9–38. Chapman and Hall, London.
  • [15]
    Kilbertus, G. (1980) Etude des microhabitats contenus dans les aggrégats du sol, leur relation avec la biomasse bactérienne et la taille des procaryotes présents. Rev. Ecol. Biol. Sols 17, 543557.
  • [16]
    Foster, R.C. (1988) Microenvironments of soil microorganisms. Biol. Fertil. Soils 6, 189203.
  • [17]
    Hattori, T. (1988) Soil aggregates as microhabitats of microorganisms. Rep. Inst. Agric. Res. Tohoku Univ. 37, 2326.
  • [18]
    Robert, M., and Chenu, C. (1992) Interactions between soil minerals and microorganisms. In: Soil Biochemistry (Stotzky, G. and Bollag, J.M., Eds.), pp. 307–404. vol. 7, Marcel Dekker Inc, New York.
  • [19]
    Jocteur Monrozier, L., Ladd, J.N., Fitzpatrick, R.W., Foster, R.C., Raupach, M. (1991) Components and microbial biomass content of size fractions in soils of contrasting aggregation. Geoderma 49, 3762.
  • [20]
    Christensen, B.T. (1992) Physical fractionation of soil and organic matter in primary particle size and density separates. Adv. Soil Sci. 20, 190.
  • [21]
    Rutherford, P.M., Juma, N.G. (1992) Influence of texture on habitable pore space and bacteria-protozoan populations in soil. Biol. Fertil. Soils 12, 221227.
  • [22]
    Kanazawa, S., Filip, Z. (1986) Distribution of microorganisms, total biomass and enzyme activities in different particles of brown soil. Microb. Ecol. 12, 205212.
  • [23]
    Lensi, R., Clay-Josserand, A., Jocteur-Monrozier, L. (1995) Denitrifiers and denitrifying activity in size fractions of a mollisol under permanent pasture and continuous cultivation. Soil Biol. Biochem. 27, 6169.
  • [24]
    van Gestel, M., Merckx, R., Vlassak, K. (1996) Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biol. Biochem. 28, 503510.
  • [25]
    Martins, J.M., Jocteur Monrozier, L., Chalamet, A., Bardin, R. (1997) Microbial response to repeated applications of low concentrations of pentachlorophenol in an alfisol under pasture. Chemosphere 35, 16371650.
  • [26]
    Kabir, M., Chotte, J.L., Rahman, M., Bally, R., Jocteur Monrozier, L. (1994) Distribution of soil fractions and location of soil bacteria in a vertisol under cultivation and perennial grass. Plant Soil 163, 243255.
  • [27]
    Ranjard, L., Poly, F., Combrisson, J., Richaume, A., Nazaret, S. (1998) A single procedure to recover DNA from the surface or inside aggregates and in various size fractions of soil suitable for PCR-based assays of bacterial communities. Eur. J. Soil Biol. 34, 8997.
  • [28]
    Normand, P., Ponsonnet, C., Nesme, X., Neyra, M. and Simonet, P. (1996) ITS analysis of prokaryotes. In: Molecular Microbial Ecology Manual (Akkermans, D.L., van Elsas, J.D. and de Bruijn, F.J., Eds.), pp. 1–12. Kluwer Academic Publishers, Dordrecht.
  • [29]
    Thioulouse, J., Chessel, D., Dolédec, S., Olivier, J.M. (1997) ADE-4: a multivariate analysis and graphical display software. Stat. Comput. 7, 7583.
  • [30]
    Nelson, J.D., Colwell, R.D. (1975) The ecology of mercury-resistant bacteria in Chesapeake bay. Microb. Ecol. 1, 191218.
  • [31]
    Rochelle, P.A., Wetherbee, M.K., Olson, B.H. (1991) Distribution of DNA sequences encoding narrow- and broad-spectrum mercury resistance. Appl. Environ. Microbiol. 57, 15811589.
  • [32]
    Baldi, F., Bianco, M.A., Pepi, M. (1995) Mercury, arsenic and boron resistant bacteria isolated from the phyllosphere as positive bioindicators of airborne pollution near geothermal plants. Sci. Total Environ. 164, 99107.
  • [33]
    Borneman, J., Triplett, E.W. (1997) Molecular microbial diversity in soils from Eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 63, 26472653.
  • [34]
    Kelly, W.J., Reanney, D.C. (1984) Mercury resistance among soil bacteria: ecology and transferability of genes encoding resistance. Soil Biol. Biochem. 16, 18.
  • [35]
    Barkay, T., Olson, B.H. (1986) Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress. Appl. Environ. Microbiol. 52, 403406.
  • [36]
    Osborn, A.M., Bruce, K.D., Strike, P., Ritchie, D.A. (1993) Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among mer determinants from Gram-negative soil bacteria indistinguishable by DNA-DNA hybridization. Appl. Environ. Microbiol. 59, 40244030.
  • [37]
    Frostegård, A., Tunlid, A., Bååth, E. (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol. Biochem. 28, 213221.
  • [38]
    Engelen, B., Meinken, K., von Wintzingerode, F., Heuer, H., Malkomes, H.P., Backhaus, H. (1998) Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Appl. Environ. Microbiol. 64, 28142821.
  • [39]
    Roane, T.M., Kellogg, S.T. (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can. J. Microbiol. 42, 593603.
  • [40]
    White, D., Wright, D.A., Glover, L.A., Prosser, J.I., Atkinson, D., Killham, K. (1994) A partial chloroform-fumigation technique to characterise the spatial location of bacteria introduced into soil. Biol. Fertil. Soils 17, 191195.
  • [41]
    Hattori, T., Hattori, R. (1976) The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. CRC Crit. Rev. Microbiol. 4, 423461.
  • [42]
    Øvreas, L., Torsvik, V. (1998) Microbial diversity and community structure in two different agricultural soil communities. Appl. Environ. Microbiol. 36, 303315.
  • [43]
    van Beelen, P., Fleuren-Kemilä, A.K., Huys, M.P.A., van Montfort, A.C.P., Vlaardingen, P.L.A. (1991) The toxic effects of pollutants on the mineralization of acetate in subsoil microcosms. Environ. Toxicol. Chem. 10, 775789.
  • [44]
    Duxburry, T., Bicknell, B. (1983) Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol. Biochem. 15, 243250.
  • [45]
    Beveridge, T.J. and Doyle, R.J. (1989) Metal ions and bacteria. John Wiley and Sons, Inc., New York.