SEARCH

SEARCH BY CITATION

References

  • [1]
    Cicerone, R.J, Oremland, R.S (1988) Biogeochemical aspects of atmospheric methane. Glob. Biogeochem. Cycles 2, 299327.
  • [2]
    Prinn, R. G. (1994) Global atmospheric-biospheric chemistry. In: Global Atmospheric-Biospheric Chemistry (Prinn, R.G., Ed.), pp. 1–18. Plenum, New York.
  • [3]
    Conrad, R. (1993) Mechanisms controlling methane emission from wetland rice fields. In: The Biogeochemistry of Global Change: Radiative Trace Gases (Oremland, R.S., Ed.), pp. 317–335. Chapman and Hall, New York.
  • [4]
    Neue, H.-U. and Sass, R. L. (1994) Trace gas emissions from rice fields. In: Global Atmospheric-Biospheric Chemistry (Prinn, R.G., Ed.), pp. 119–147. Plenum, New York.
  • [5]
    Holzapfel-Pschorn, A, Conrad, R, Seiler, W (1986) Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92, 223233.
  • [6]
    Kimura, M, Miura, Y, Watanabe, A, Katoh, T, Haraguchi, H (1991) Methane emission from paddy field. 1. Effect of fertilization, growth stage and midsummer drainage pot experiment. Environ. Sci. 4, 265271.
  • [7]
    Minoda, T, Kimura, M, Wada, E (1996) Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields. J. Geophys. Res. 101, 2109121097.
  • [8]
    Chidthaisong, A, Watanabe, I (1997) Methane formation and emission from flooded rice soil incorporated with 13C-labeled rice straw. Soil Biol. Biochem. 29, 11731181.
  • [9]
    Watanabe, A, Yoshida, M, Kimura, M (1998) Contribution of rice straw carbon to CH4 emission from rice paddies using 13C-enriched rice straw. J. Geophys. Res. 103, 82378242.
  • [10]
    Dannenberg, S, Conrad, R (1999) Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45, 5371.
  • [11]
    Schütz, H, Holzapfel-Pschorn, A, Conrad, R, Rennenberg, H, Seiler, W (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. 94, 1640516416.
  • [12]
    Yagi, K, Minami, K (1990) Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599610.
  • [13]
    Sass, R.L, Fisher, F.M, Turner, F.T, Jund, M.F (1991) Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation. Glob. Biogeochem. Cycles 5, 335350.
  • [14]
    Delwiche, C.C, Cicerone, R.J (1993) Factors affecting methane production under rice. Glob. Biogeochem. Cycles 7, 143155.
  • [15]
    Denier van der Gon, H.A.C, Neue, H.U (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Glob.l Biogeochem. Cycles 9, 1122.
  • [16]
    Chidthaisong, A, Inubushi, K, Muramatsu, Y, Watanabe, I (1996) Production potential and emission of methane in flooded rice soil microcosms after continuous application of straws. Microbes Environ. 11, 7378.
  • [17]
    Rath, A.K, Mohanty, S.R, Mishra, S, Kumaraswamy, S, Ramakrishnan, B, Sethunathan, N (1999) Methane production in unamended and rice-straw-amended soil at different moisture levels. Biol. Fertil. Soils 28, 145149.
  • [18]
    Watanabe, A, Kimura, M (1998) Effect of rice straw application on CH4 emission from paddy fields. 4. influence of rice straw incorporated during the previous cropping period. Soil Sci. Plant Nutr. 44, 507512.
  • [19]
    Huang, Y, Sass, R.L, Fisher, F.M (1998) A semi-empirical model of methane emission from flooded rice paddy soils (review). Glob. Change Biol. 4, 247268.
  • [20]
    Tsutsuki, K, Ponnamperuma, F.N (1987) Behavior of anaerobic decomposition products in submerged soils. Effects of organic material amendment, soil properties, and temperature. Soil Sci. Plant Nutr. 33, 1333.
  • [21]
    Watanabe, A, Katoh, K, Kimura, M (1993) Effect of rice straw application on CH4 emission from paddy fields. 2. contribution of organic constituents in rice straw. Soil Sci. Plant Nutr. 39, 707712.
  • [22]
    Shen, H.S, Ni, D.B, Sundstøl, F (1998) Studies on untreated and urea-treated rice straw rom three cultivation seasons: 1. Physical and chemical measurements in straw and straw ractions. Anim. Feed Sci. Technol. 73, 243261.
  • [23]
    Zeikus, J.G (1981) Lignin metabolism and the carbon cycle. Adv. Microb. Ecol. 5, 211243.
  • [24]
    Benner, R, Maccubbin, A.E, Hodson, R.E (1984) Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl. Environ. Microbiol. 47, 9981004.
  • [25]
    Zehnder, A.J.B. (1978) Ecology of methane formation. In: Water Pollution Microbiology, Vol. 2 (Mitchell, R., Ed.), pp. 349–376. Wiley, New York.
  • [26]
    Schink, B. (1992) Syntrophism among prokaryotes. In: The Prokaryotes, Vol. 1 (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K.H., Eds.), pp. 276–299. Springer, New York.
  • [27]
    Stams, A.J.M (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66, 271294.
  • [28]
    Chin, K.J, Conrad, R (1995) Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol. Ecol. 18, 85102.
  • [29]
    Achtnich, C, Bak, F, Conrad, R (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol. Fertil. Soils 19, 6572.
  • [30]
    Krylova, N.I, Janssen, P.H, Conrad, R (1997) Turnover of propionate in methanogenic paddy soil. FEMS Microbiol. Ecol. 23, 107117.
  • [31]
    Klüber, H.D, Conrad, R (1998) Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol. Ecol. 25, 301318.
  • [32]
    Yamane, I, Sato, K (1964) Decomposition of glucose and gas formation in flooded soil. Soil Sci. Plant Nutr. 10, 3541.
  • [33]
    Saito, M, Wada, H, Takai, Y (1990) Development of a microbial community on cellulose buried in waterlogged soil. Biol. Fertil. Soils 9, 301305.
  • [34]
    Krumböck, M, Conrad, R (1991) Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol. Ecol. 85, 247256.
  • [35]
    Joulian, C, Ollivier, B, Neue, H.U, Roger, P.A (1996) Microbiological aspects of methane emission by a ricefield soil from the Camargue (France). 1. Methanogenesis and related microflora. Eur. J. Soil Biol. 32, 6170.
  • [36]
    Chin, K.J, Rainey, F.A, Janssen, P.H, Conrad, R (1998) Methanogenic degradation of polysaccharides and the characterization of polysaccharolytic clostridia from anoxic rice field soil. Syst. Appl. Microbiol. 21, 185200.
  • [37]
    Chidthaisong, A, Rosenstock, B, Conrad, R (1999) Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil. Appl. Environ. Microbiol. 65, 23502355.
  • [38]
    Chidthaisong, A. and Conrad, R. (1999) Pattern of non-methanogenic and methanogenic degradation of cellulose in anoxic rice field soil. FEMS Microbiol. Ecol. (in press).
  • [39]
    Bae, H.D, Mcallister, T.A, Kokko, E.G, Leggett, F.L, Yanke, L.J, Jakober, K.D, Ha, J.K, Shin, H.T, Cheng, K.J (1997) Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65, 165181.
  • [40]
    Oremland, R.S, Capone, D.G (1988) Use of ‘specific’ inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10, 285383.
  • [41]
    Rothfuss, F, Conrad, R (1993) Thermodynamics of methanogenic intermediary metabolism in littoral sediment of Lake Constance. FEMS Microbiol. Ecol. 12, 265276.
  • [42]
    Conrad, R. and Schütz, H. (1988) Methods of studying methanogenic bacteria and methanogenic activities in aquatic environments. In: Methods in Aquatic Bacteriology (Austin, B., Ed.), pp. 301–343. Wiley, Chichester.
  • [43]
    Dannenberg, S, Wudler, J, Conrad, R (1997) Agitation of anoxic paddy soil slurries affects the performance of the methanogenic microbial community. FEMS Microbiol. Ecol. 22, 257263.
  • [44]
    Conrad, R, Mayer, H.P, Wüst, M (1989) Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial associations in anoxic paddy soil. FEMS Microbiol. Ecol. 62, 265274.
  • [45]
    Schuler, S, Conrad, R (1990) Soils contain two different activities for oxidation of hydrogen. FEMS Microbiol. Ecol. 73, 7784.
  • [46]
    Thauer, R.K, Jungermann, K, Decker, K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100180.
  • [47]
    Stieb, M, Schink, B (1986) Anaerobic degradation of isovalerate by a defined methanogenic coculture. Arch. Microbiol. 144, 291295.
  • [48]
    Wu, W.M, Jain, M.K, Hickey, R.F, Zeikus, J.G (1996) Perturbation of syntrophic isobutyrate and butyrate degradation with formate and hydrogen. Biotechnol. Bioeng. 52, 404411.
  • [49]
    Yao, H, Conrad, R, Wassmann, R, Neue, U (1999) Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47, 269295.
  • [50]
    Yao, H, Conrad, R (1999) Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy. Soil Biol. Biochem. 31, 463473.
  • [51]
    Albert, D.B, Martens, C.S (1997) Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC. Mar. Chem. 56, 2737.
  • [52]
    Neue, H.U, Scharpenseel, H.W (1987) Decomposition pattern of 14C-labeled rice straw in aerobic and submerged rice soils of the Philippines. Sci. Total Environ. 62, 431434.
  • [53]
    Conrad, R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments (review). FEMS Microbiol. Ecol. 28, 193202.
  • [54]
    Thebrath, B, Mayer, H.P, Conrad, R (1992) Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. FEMS Microbiol. Ecol. 86, 295302.