SEARCH

SEARCH BY CITATION

References

  • [1]
    Prather, M., Derwent, R., Ehhalt, D., Fraser, P., Sanhueza, E. and Zhou, X. (1994) Other trace gases and atmospheric chemistry. In: Climate Change 1994, Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios (Houghton, J.T., Meira, L.G., Filho, J., Bruce, H., Lee, B.A., Callander, E., Haites, N., Harris, N. and Maskell, K., Eds.), pp. 85–89. Cambridge University Press.
  • [2]
    Sundh, I, Nilsson, M, Granberg, G, Svensson, B.H (1994) Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. Microb. Ecol. 27, 253265.
  • [3]
    Moore, T.R, Dalva, M (1997) Methane and carbon dioxide exchange potentials of peat soils and anaerobic laboratory incubations. Soil Biol. Biochem. 29, 11571164.
  • [4]
    Svensson, B.H (1984) Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Appl. Environ. Microbiol. 48, 389394.
  • [5]
    Williams, R.T, Crawford, R.L (1984) Methane production in Minnesota peatlands. Appl. Environ. Microbiol. 47, 12661271.
  • [6]
    Goodwin, S, Zeikus, J.G (1987) Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. Appl. Environ. Microbiol. 53, 5764.
  • [7]
    Yavitt, J.B, Lang, G.E (1990) Methane production in contrasting wetland sites: response to organic-chemical components of peat and to sulfate reduction. Geomicrobiol. J. 8, 2746.
  • [8]
    Kotsyurbenko, O.R, Nozhevnikova, A.N, Zavarzin, G.A (1993) Methanogenic degradation of organic matter by anaerobic bacteria at low temperature. Chemosphere 27, 17451761.
  • [9]
    Kotsyurbenko, O.R, Nozhevnikova, A.N, Soloviova, T.I, Zavarzin, G.A (1996) Methanogenesis at low temperatures by microflora of tundra wetland soil. Antonie van Leeuwenhoek 69, 7586.
  • [10]
    Valentine, D.W, Holland, E.A, Schimel, S (1994) Ecosystem and physiological controls over methane production in northern wetlands. J. Geophys. Res. 99, 15631571.
  • [11]
    Westermann, P (1994) The effect of incubation temperature on steady-state concentrations of hydrogen and volatile fatty acids during anaerobic degradation in slurries from wetland sediments. FEMS Microbiol. Ecol. 13, 295302.
  • [12]
    Westermann, P (1996) Temperature regulation of anaerobic degradation of organic matter. World J. Microbiol. Technol. 12, 497503.
  • [13]
    Bergman, I, Svensson, B.H, Nilsson, M (1998) Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biol. Biochem. 30, 729741.
  • [14]
    Yavitt, J.B, Lang, G.E, Wieder, R.K (1987) Control of carbon mineralisation to CH4 and CO2 in anaerobic, sphagnum-derived peat from Big Run Bog, West Virginia. Biogeochemistry 4, 141157.
  • [15]
    Saarnio, S, Alm, J, Silvola, J, Lohila, A, Nykänen, H, Martikainen, P.J (1997) Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologica 110, 414422.
  • [16]
    Sinke, A.J.C, Cornelese, A.A, Cappenberg, T.E, Zhender, A.J.B (1992) Seasonal variation in sulphate reduction and methanogenesis in peaty sediments of eutrophic lake Loosdrecht, the Netherlands. Biogeochemistry 16, 4361.
  • [17]
    Sorrell, B.K, Boon, P.I (1992) Biogeochemistry of billabong sediments. II. seasonal variations in methane production. Freshwater Biol. 27, 435445.
  • [18]
    Schütz, H., Schröder, P. and Rennenberg, H. (1991) Role of plants in regulating the methane flux to the atmosphere. In: Trace Gas Emissions by Plants (Sharkey, T.D., Holland, E.A. and Mooney, H.A., Eds.), pp. 29–91. Academic Press Inc., New York.
  • [19]
    Mikkelä, C, Sundh, I, Svensson, B.H, Nilsson, M (1995) Diurnal variation in methane emission in relation to water table, soil temperature, climate and vegetation cover in an Swedish acid mire. Biogeochemistry 28, 93114.
  • [20]
    Hochachka, P.W. and Somero, G.N. (1984) Temperature adaptation. In: Biochemical Adaptation, pp. 355–369. Princeton University Press, Princeton.
  • [21]
    Yavitt, J.B, Williams, C.J, Wieder, R.K (1997) Production of methane and carbon dioxide in peatland ecosystems across north America: Effects of temperature, aeration, and organic chemistry of peat. Geomicrobiol. J. 14, 299316.
  • [22]
    Kelly, C.A, Chynoweth, D.P (1981) The contributions of temperature and the input of organic matter in controlling rates of sediment methanogenesis. Limnol. Oceanogr. 26, 891897.
  • [23]
    Conrad, R, Schütz, H, Babbel, M (1987) Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol. Ecol. 45, 281289.
  • [24]
    Westermann, P, Ahring, B.K (1987) Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp. Appl. Environ. Microbiol. 53, 25542559.
  • [25]
    Schütz, H, Seiler, W, Conrad, R (1990) Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry 11, 7795.
  • [26]
    Sextone, A.J, Mains, C.N (1990) Production of methane and ethylene in organic horizons of spruce forest soils. Soil Biol. Biochem. 22, 135139.
  • [27]
    Updegraff, K, Pastor, J, Bridgham, S.D, Johnston, C.A (1995) Environmental and substrate controls over carbon and nitrogen mineralisation in northern wetlands. Ecol. Appl. 5, 151163.
  • [28]
    Van Hulzen, J.B, Segers, R, van Bodegom, P.M, Leffelaar, P.A (1999) Temperature effects on soil methane production: and explanation for observed variability. Soil Biol. Biochem. 31, 19191929.
  • [29]
    Bergman, I, Lundberg, P, Nilsson, M (1999) Microbial carbon mineralisation in an acid surface peat: effects of environmental factors in laboratory incubations. Soil Biol. Biochem. 31, 18671877.