• [1]
    Kelly, D.P., Wood, A.P. (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermithiobacillus gen. nov.. Int. J. Syst. Bacteriol. 50, 511516.
  • [2]
    Norris, P.R. (1990) Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Microbial Mineral Recovery (Erlich, H.L. and Brierley, C., Eds.), pp. 3–27. McGraw-Hill, New York.
  • [3]
    Rawlings, D.E., Tributsch, H., Hansford, G.S. (1999) Reasons why ‘Leptospirillum’-like species rather Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145, 513.
  • [4]
    Silverman, M.P., Ehrlich, H.L. (1964) Microbial formation and degradation of minerals. Adv. Appl. Microbiol. 6, 153206.
  • [5]
    Berry, V.K. and Murr, L.E. (1978) Direct observations of bacteria and quantitative studies of their catalytic role in the leaching of low-grade copper bearing waste. In: Metallurgical Applications of Biological Leaching and Related Phenomena (Murr, L.R., Torma, A.E. and Torma, J.A. Eds.), Academic Press, New York.
  • [6]
    Bennett, J.C., Tributsch, H. (1978) Bacterial leaching patterns on pyrite crystal surfaces. J. Bacteriol. 134, 310317.
  • [7]
    Mustin, C., De Donato, P., Berthelin, J. (1992) Quantification of the intragranular porosity formed in bioleaching of pyrite by Thiobacillus ferrooxidans. Biotechnol. Bioeng. 39, 11211127.
  • [8]
    Rodriguez, L.M., Tributsch, H. (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch. Microbiol. 149, 401405.
  • [9]
    Sand, W., Gerke, T., Hallmann, R., Schippers, A. (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism – a critical evaluation of bacterial leaching. Appl. Environ. Microbiol. 43, 961966.
  • [10]
    Arredondo, R., Garcia, A., Jerez, C.A. (1994) Partial removal of lipopolysaccharide for Thiobacillus ferrooxidans affects its adhesion to solids. Appl. Environ. Microbiol. 60, 28462851.
  • [11]
    Lawrence, J.R., Kwong, Y.T.J., Swerhone, G.D.W. (1997) Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans. Can. J. Microbiol. 43, 178188.
  • [12]
    Schippers, A., Jozsa, P.G., Sand, W. (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl. Environ. Microbiol. 62, 34243431.
  • [13]
    Edwards, K.J., Bond, P.L., Gihring, T.M., Banfield, J.F. (2000) An Archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 279, 17961799.
  • [14]
    O.V. Golyshina et al Ferroplasma acidiphilum gen. nov., sp. nov.: an acidophilic, autotrophic, ferrous iron-oxidizing, cell wall-lacking, mesophilic member of Ferroplasmaceae fam. nov., comprising a distinct lineage of Archaea Int. J. Syst. Bacteriol. 50 2000 9971006.
  • [15]
    K.J. EdwardsM.O. SchrenkR. HamersJ.F. Banfield Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment, Am. Mineral., 83 1998 1444.
  • [16]
    Edwards, K.J., Bond, P.L., Banfield, J.F. (2000) Characteristics of attachment and growth of Thiobacillus caldus on sulfide minerals: A chemotactic response to sulfur minerals. Environ. Microbiol. 2, 324332.
  • [17]
    Nordstrom, D.K. and Southham, G. (1997) The geomicrobiology of acid mine drainage. In: Geomicrobiology: Interactions between Microbes and Minerals, Vol. 35 (Banfield, J.F. and Nealson, K.H., Eds.), pp. 361–390. Mineralogical Society of America, Washington, DC.
  • [18]
    Mustin, C., Berthelin, J., Marion, P., De Donato, P. (1992) Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 58, 11751182.
  • [19]
    Fowler, T.A., Crundwell, F.K. (1998) Leaching experiments of zinc sulfide by Thiobacillus ferrooxidans: Experiments with a controlled redox potential indicate no direct bacterial mechanism. Appl. Environ. Microbiol. 64, 35703575.
  • [20]
    Groudev, S. (1979) Mechanism of bacterial oxidation of pyrite. Microbiology 16, 7587.
  • [21]
    Larsson, L., Olsson, G., Holst, O., Karlsson, H.T. (1993) Oxidation of pyrite by Acidianus brierleyi: Importance of close contact between the pyrite and the microorganisms. Biotechnol. Lett. 15, 99104.
  • [22]
    Fernandez, M.G., Mustin, C., De Donato, P., Barres, O., Marion, P., Berthelin, J. (1995) Occurrences at mineral–bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans. Biotechnol. Bioeng. 46, 1321.