SEARCH

SEARCH BY CITATION

References

  • [1]
    Karl, D.M. (1995) Ecology of free-living, hydrothermal vent microbial communities. In: The Microbiology of Deep-Sea Hydrothermal Vents (Karl, D.M., Ed.), pp. 35–124. CRC, New York.
  • [2]
    Huber, R., Stöhr, J., Hohenhaus, S., Rachel, R., Burggraf, S., Jannasch, H.W., Stetter, K.O. (1995) Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Arch. Microbiol. 164, 255264.
  • [3]
    L'Haridon, S., Cilia, V., Messner, P., Raguénès, G., Gambacorta, A., Sleytr, U.B., Prieur, D., Jeanthon, C. (1998) Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulfur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 48, 701711.
  • [4]
    S. BurggrafH.W. JannaschB. NicolausK.O. Stetter Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria, Syst. Appl. Microbiol., 13 1990 24.
  • [5]
    Kurr, M., Huber, R., König, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjansson, J.K., Stetter, K.O. (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol. 156, 239247.
  • [6]
    Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R., Wolfe, R.S. (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136, 254261.
  • [7]
    de Angelis, M.A., Lilley, M.D., Olson, E.J., Baross, J.A. (1993) Methane oxidation in deep-sea hydrothermal plumes of the Endeavour segment of the Juan de Fuca Ridge. Deep-Sea Res. 40, 11691186.
  • [8]
    Cowen, J.P., Massoth, G.J., Baker, E.T. (1986) Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume. Nature 322, 169171.
  • [9]
    Jannasch, H.W. (1983) Microbial processes at deep sea hydrothermal vents. In: Hydrothermal Processes at Seafloor Spreading Centers (Rona, P.A., Boström, K., Laubier, L. and Smith, K.L., Jr., Eds.), pp. 677–709. Plenum, New York.
  • [10]
    Jannasch, H.W., Wirsen, C.O. (1981) Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol. 41, 528538.
  • [11]
    Nelson, D.C., Wirsen, C.O., Jannasch, H.W. (1989) Characterization of large autotrophic Beggiatoa abundant at hydrothermal vents of the Guaymas Basin. Appl. Environ. Microbiol. 55, 29092917.
  • [12]
    Juniper, S.K., Fouquet, Y. (1988) Filamentous iron–silica deposits from modern and ancient hydrothermal sites. Can. Mineral. 26, 859869.
  • [13]
    Karl, D.M., Brittain, A.M., Tilbrook, B.D. (1989) Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep-Sea Res. 36, 16551673.
  • [14]
    Moyer, C.L., Dobbs, F.C., Karl, D.M. (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61, 15551562.
  • [15]
    Moyer, C.L., Tiedje, J.M., Dobbs, F.C., Karl, D.M. (1998) Diversity of deep-sea hydrothermal vent Archaea from Loihi Seamount, Hawaii. Deep-Sea Res. II 45, 303317.
  • [16]
    Reysenbach, A.-L., Longnecker, K., Kirshtein, J. (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66, 37883797.
  • [17]
    Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (1994) Current Protocols in Molecular Biology. John Wiley and Sons, New York.
  • [18]
    Sambrook, J., Fritsch, E.F. and Maniatus, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, NY.
  • [19]
    Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T., Saxman, P.R., Stredwick, J.M., Garrity, G.M., Li, B., Olsen, G.J., Pramanik, S., Schmidt, T.M., Tiedje, J.M. (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28, 173174.
  • [20]
    Smith, S.W., Overbeek, R., Woese, C.R., Gilbert, W., Gillevet, P.M. (1994) The genetic data environment an expandable GUI for multiple sequence analysis. Comput. Appl. Biosci. 10, 671675.
  • [21]
    Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 33893402.
  • [22]
    Kimura, M. (1980) A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111120.
  • [23]
    Swofford, D.L. (1998) PAUP*, Phylogenetic Analysis Using Parsimony (*and other methods), Version 4. Sinauer Associates, Sunderland, MA.
  • [24]
    Olsen, G.J., Matsuda, H., Hagstrom, R., Overbeek, R. (1994) fastDNAml: A tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10, 4148.
  • [25]
    Reysenbach, A.-L., Wickham, G.S., Pace, N.R. (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl. Environ. Microbiol. 60, 21132119.
  • [26]
    Takai, K., Sako, Y. (1999) A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol. Ecol. 28, 177188.
  • [27]
    Tanner, M.A., Goebel, B.M., Dojka, M.A., Pace, N.R. (1998) Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl. Environ. Microbiol. 64, 31103113.
  • [28]
    DeLong, E.F., Franks, D.G., Alldredge, A.L. (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38, 924934.
  • [29]
    Suzuki, M.T., Rappé, M.S., Haimberger, Z.W., Winfield, H., Adair, N., Ströbel, J., Giovannoni, S.J. (1997) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63, 983989.
  • [30]
    Cottrell, M.T., Kirchman, D.L. (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66, 51165122.
  • [31]
    Polz, M.F., Cavanaugh, C.M. (1995) Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc. Natl. Acad. Sci. USA 92, 72327236.
  • [32]
    Cary, S.C., Cottrell, M.T., Stein, J.L., Camacho, F., Desbruyères, D. (1997) Molecular identification and localization of filamentous symbiotic Bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl. Environ. Microbiol. 63, 11241130.
  • [33]
    Taylor, C.D., Wirsen, C.O., Gaill, F. (1999) Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl. Environ. Microbiol. 65, 22532255.
  • [34]
    Van Dover, C.L., Fry, B., Grassle, J.F., Humphris, S., Rona, P.A. (1988) Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid-Atlantic Ridge. Mar. Biol. 98, 209216.
  • [35]
    Gebruk, A.V., Pimenov, N.V., Savvichev, A.S. (1993) Feeding specialization of bresiliid shrimps in the TAG site hydrothermal community. Mar. Ecol. Prog. Ser. 98, 247253.
  • [36]
    Gaill, F., Desbruyères, D., Laubier, L. (1988) Relationships between the ‘Pompeii worms’ and their epibiotic bacteria. Oceanol. Acta 8, 147154.
  • [37]
    Alayse-Danet, A.M., Desbruyeres, D., Gaill, F. (1987) The possible nutritional or detoxification role of the epibiotic bacteria of Alvinellid polychaetes: Review of current data. Symbiosis 4, 5162.
  • [38]
    Macdonald, K.C., Haymon, R.M., Miller, S.P., Sempere, J.-C., Fox, P.J. (1988) Deep-Tow and Sea Beam studies of dueling propagating ridges on the East Pacific Rise near 20°40′S. J. Geophys. Res. 93, 28752898.