• [1]
    Munro, M.H.G., Leibrand, R.T. and Blunt, J.W. (1987) The search for antiviral and anticancer compounds from marine organisms. In: Bioorganic Marine Chemistry 1 (Scheuer, P.J., Ed.), pp. 93–176. Springer Verlag, Heidelberg.
  • [2]
    Rinehart, K.L. (1988) Screening to detect biological activity. In: Biomedical Importance of Marine Organisms (Fautin, D.G., Ed.), pp. 13–22. Californian Academy of Science, San Francisco, CA.
  • [3]
    Schmitz, F.J. (1994) Cytotoxic compounds from sponges and associated microfauna. In: Sponges in Time and Space (van Soest, R.W.M., van Kempen, Th.M.G. and Braekman, J.C., Eds.), Proc. 4th Int. Porifera congr. Balkema, Rotterdam.
  • [4]
    Fenical, W (1996) Marine biodiversity and the medicine cabinet. The status of new drugs from marine organisms. Oceanography 9, 2327.
  • [5]
    A.C StierleJ.H Cardellina IIF.L Singleton A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis, Exerientia, 44 1988 1021.
  • [6]
    Unson, M.D, Faulkner, D.J (1993) Cyanobacterial symbiont synthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 44, 10211022.
  • [7]
    Unson, M.D, Holland, N.D, Faulkner, D.J (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119, 111.
  • [8]
    Bewley, C.A, Holland, N.D, Faulkner, D.J (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52, 716722.
  • [9]
    Kobayashi, J, Ishibashi, M (1993) Bioactive metabolites from symbiotic marine microorganisms. Chem. Rev. 93, 17531769.
  • [10]
    J Vacelet Étude en microscopie électronique de l'association entre bactéries et spongiaires du genre Verongia (Dictyoceratida), J. Microsc. Biol. Cell., 23, 3 1975 271288.
  • [11]
    Friedrich, A.B, Merkert, H, Fendert, T, Hacker, J, Proksch, P, Hentschel, U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridisation (FISH). Mar. Biol. 134, 461470.
  • [12]
    Sharma, G.M, Burkholder, P.R (1967) Studies on antimicrobial substances of sponges. I. Isolation, purification and properties of a new bromine-containing antimicrobial substance. J. Antibiot. Tokyo (Ser. A) 20, 200203.
  • [13]
    Faulkner, D.J. (1978) Antibiotics from marine organisms. In: Topics in Atibiotic Chemistry, Vol. 2 (Sammes, P.G., Ed.), pp. 9–58. Ellis Horwood Ltd., Chichester.
  • [14]
    Weiss, B, Ebel, R, Elbrächter, M, Kirchner, M, Proksch, P (1996) Defense metabolites from the marine sponge Verongia aerophoba. Biochem. Syst. Ecol. 24, 112.
  • [15]
    Kreuter, M.H, Leake, R.E, Rinaldi, F, Müller-Klieser, W, Müller, W.E.G, Schröder, H.C (1990) Inhibition of intrinsic tyrosine kinase activity of EGF-receptor kinase complex from human breast cancer cells by the marine sponge metabolite (+)-aeroplysinin-1. Comp. Biochem. Physiol. 97B, 151158.
  • [16]
    Thompson, J.E, Barrow, K.D, Faulkner, J.D (1984) Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulous cells of the marine sponge Aplysina fistularis (=Verongia thiona). Acta Zool. (Stockh.) 44, 199210.
  • [17]
    Teeyapant, R, Proksch, P (1993) Biotransformation of brominated compounds in the marine sponge Verongia aerophoba: evidence for an induced chemical defense. Naturwissenschaften 80, 369370.
  • [18]
    Ebel, R, Brenzinger, M, Kunze, A, Gross, H.J, Proksch, P (1997) Wound activation of pro-toxins in the marine sponge Aplysina aerophoba. J. Chem. Ecol. 23, 14511462.
  • [19]
    Santavy, D.L, Willenz, P, Colwell, R.R (1990) Phenotypic study of bacteria associated with the caribbean sclerosponge, Ceratoporella nicholsoni. Appl. Environ. Microbiol. 56, 17501762.
  • [20]
    Rippka, R (1988) Isolation and purification of cyanobacteria. Methods Enzymol. 167, 327.
  • [21]
    Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
  • [22]
    Lane, D.J. (1991) 16S/23S rRNA sequencing. In: Nucleic Acid Techniques in Bacterial Systematics (Stackebrandt, E. and Goodfellow, M., Eds.), John Wiley and Sons, Chichester.
  • [23]
    Strunk, O. and Ludwig, W. (1997) ARB software program package,
  • [24]
    Vining, L.C (1990) Functions of secondary metabolites. Annu. Rev. Microbiol. 44, 395427.
  • [25]
    Martin, M.F, Liras, P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu. Rev. Microbiol. 43, 173206.
  • [26]
    Singh, N.H (1945) The selection of bacterial food by soil amoebae and the toxic effects of bacterial pigments and other products on soil protozoa. Br. J. Exp. Pathol. 26, 316325.
  • [27]
    Forst, S, Dowds, B, Boemare, N, Stackebrandt, E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51, 4772.
  • [28]
    Strobel, G.A (1997) Bacterial phytotoxins. Annu. Rev. Microbiol. 31, 205224.
  • [29]
    Marahiel, M.A, Nakano, M.M, Zuber, P (1993) Regulation of peptide antibiotic production in Bacillus. Mol. Microbiol. 7, 631636.
  • [30]
    Meier, H, Amann, R, Ludwig, W, Schleifer, K.H (1999) Specific oligonucleotide probes for in situ detection of a major group of Gram-positive bacteria with low G+C content. Syst. Appl. Microbiol. 22, 186196.
  • [31]
    Webster, N.S, Wilson, K.J, Blackall, L.L, Hill, R.T (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl. Environ. Microbiol. 67, 434444.
  • [32]
    Stackebrandt, E, Goebel, M (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Bacteriol. 44, 846849.
  • [33]
    Bultel-Ponce, V, Debitus, C, Berge, J.P, Cerceau, C, Guyot, M (1998) Metabolites from the sponge-associated bacterium Micrococcus luteus. J. Mar. Biotechnol. 6, 233236.
  • [34]
    Bowman, J.P, McCammon, S.A, Brown, M.V, Nichols, D.S, McMeekin, T.A (1997) Diversity and association of psychrophilic bacteria in antarctic sea ice. Appl. Environ. Microbiol. 63, 30683078.
  • [35]
    Mohapatra, B.R, Bapuji, M, Banerjee, U.C (1997) Production and properties of L-asparaginase from Mucor species associated with a marine sponge (Spirastrella sp.). Cytobios 92, 165173.
  • [36]
    Junge, K, Gosink, J.J, Hoppe, H.G, Staley, J.T (1998) Arthrobacter, Brachybacterium and Planococcus isolates identified from antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov.. Syst. Appl. Microbiol. 21, 306314.
  • [37]
    Carnio, M.C, Eppert, I, Scherer, S (1999) Analysis of the bacterial surface ripening flora of German and French smeared cheeses with respect to their anti-listerial potential. Int. J. Food Microbiol. 47, 8997.
  • [38]
    West, P.A. and Colwell, R.R. (1984) Identification and classification of the Vibrionaceae– an overview. In: Vibrios in the Environment (Colwell, R.R., Ed.), pp. 285–363. John Wiley and Sons, New York.
  • [39]
    Eilers, H, Penthaler, J, Glöckner, F.O, Amann, R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 30443051.
  • [40]
    Holmström, C, Kjelleberg, S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 30, 285293.
  • [41]
    Vacelet, J (1970) Description de cellules a bactéries intranucléaires chez des éponges Verongia. J. Microsc. 9, 333346.
  • [42]
    Kameyama, T, Takahashi, A, Kurasawa, S, Ishizuka, M, Okami, Y, Takeuchi, T, Umezawa, H (1987) Bisucaberin, a new siderophore, sensitizing tumor cells to macrophage-mediated cytolysis. I. Taxonomy of the producing organism, isolation and biological properties. J. Antibiot. (Tokyo) 40, 16641670.
  • [43]
    Martin, J.F, Liras, P (1989) Organisation and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu. Rev. Microbiol. 43, 173206.
  • [44]
    Baba, T, Schneewind, O (1998) Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol. 6, 6671.
  • [45]
    W Witte Antibiotic resistance in Gram-positive bacteria: epidemiological aspects, J. Antimicrob. Chemother., 44, Suppl. A 1999 19.
  • [46]
    Smith, T.L, Jarvis, W.R (1999) Antimicrobial resistance in Staphylococcus aureus. Microb. Infect. 1, 795805.
  • [47]
    Raad, I, Alrahwan, A, Rolston, K (1998) Staphylococcus epidermidis: emerging resistance and need for alternative agents. Clin. Infect. Dis. 26, 11821188.
  • [48]
    De Lalla, F (1999) Antimicrobial chemotherapy in the control of surgical infectious complications. J. Chemother. 11, 440445.