• [1]
    Farman, J.C, Gardiner, B.G, Shanklin, J.D (1985) Large losses of total ozone in Antarctica reveal seasonal CLOx/NOx. Nature 315, 207210.
  • [2]
    World Meteorological Organization, Geneva (1998) Global Ozone Research and Monitoring Project – Scientific Assessment of Ozone Depletion.
  • [3]
    Vincent, W.F. and Neale, P.J. (2000) Mechanisms of UV damage to aquatic organisms. In: The Effects of UV Radiation in the Marine Environment (de Mora, S., Demers, S. and Vernet, M., Eds.), pp. 149–176. Cambridge University Press, Cambridge.
  • [4]
    Garcia-Pichel, F, Castenholz, R.W (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 59, 163169.
  • [5]
    Cockell, C.S, Knowland, J (1999) Ultraviolet radiation screening compounds. Biol. Rev. Camb. Philos. Soc. 74, 311345.
  • [6]
    Vincent, W.F, Quesada, A (1994) Ultraviolet radiation effects on cyanobacteria: implications for Antarctic microbial communities. Antarct. Res. Ser. 62, 111124.
  • [7]
    Donkor, V.A, Häder, D.P (1995) Protective strategies for several cyanobacteria against solar radiation. J. Plant Physiol. 145, 750755.
  • [8]
    Malloy, K.D, Holman, M.A, Mitchell, D, Detrich, H.W (1997) Solar UVB-induced DNA damage and photoenzymatic DNA repair in Antarctic zooplankton. Proc. Natl. Acad. Sci. USA 94, 12581263.
  • [9]
    Roberts, L (1989) Does the ozone hole threaten Antarctic life. Science 244, 288289.
  • [10]
    Caldwell, M.M, Bjorn, L.O, Bornman, J.F, Flint, S.D, Kulandaivelu, G, Teramura, A.H, Tevini, M (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J. Photochem. Photobiol. B Biol. 46, 4052.
  • [11]
    Lao, K.Q, Glazer, A.N (1996) Ultraviolet-B photodestruction of a light-harvesting complex. Proc. Natl. Acad. Sci. USA 93, 52585263.
  • [12]
    Babu, G.S, Joshi, P.C, Viswanathan, P.N (1998) UVB-induced reduction in biomass and overall productivity of cyanobacteria. Biochem. Biophys. Res. Commun. 244, 138142.
  • [13]
    Araoz, R, Häder, D.P (1997) Ultraviolet radiation induces both degradation and synthesis of phycobilisomes in Nostoc sp.: a spectroscopic and biochemical approach. FEMS Microbiol. Ecol. 23, 301313.
  • [14]
    Quesada, A, Mouget, J.L, Vincent, W.F (1995) Growth of Antarctic cyanobacteria under ultraviolet-radiation – UVA counteracts UVB inhibition. J. Phycol. 31, 242248.
  • [15]
    Quesada, A, Goff, L, Karentz, D (1998) Effects of natural UV radiation on Antarctic cyanobacterial mats. Proc. NIPR Symp. Polar Biol. 11, 98111.
  • [16]
    Montiel, P, Smith, A, Keiller, D (1999) Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime Antarctic. Polar Res. 18, 229235.
  • [17]
    Newsham, K.K, Greenslade, P.D, McLeod, A.R (1999) Effects of elevated ultraviolet radiation on Quercus robur and its insect and ectomycorrhizal associates. Global Change Biol. 5, 881890.
  • [18]
    Vincent, W.F. (1999) Cyanobacterial dominance in the polar regions. In: The Ecology of Cyanobacteria (Whitton, B.A. and Potts, M., Eds.), pp. 321–340. Kluwer Academic Publishers, Dordrecht.
  • [19]
    Vincent, W.F, Downes, M.T, Castenholz, R.W, Howard-Williams, C (1993) Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur. J. Phycol. 28, 213221.
  • [20]
    Wynn-Williams, D.D (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb. Ecol. 31, 177188.
  • [21]
    Lu, C.M, Chau, C.W, Zhang, J.H (2000) Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis– assessment by chlorophyll fluorescence analysis. Chemosphere 41, 191196.
  • [22]
    Campbell, D, Hurry, V, Clarke, A.K, Gustafsson, P, Oquist, G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62, 667685.
  • [23]
    Torzillo, G, Bernardini, P, Masojidek, J (1998) On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria). J. Phycol. 34, 504510.
  • [24]
    Rippka, R, Deruelles, J, Waterbury, J.B, Herdman, M, Stanier, R.Y (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 161.
  • [25]
    Caldwell, M.M. (1971) Solar ultraviolet radiation and the growth and development of higher plants. In: Photophysiology, Vol. 6 (Giese, A., Ed.), pp. 131–177. Academic Press, New York.
  • [26]
    Schulze, E.-D. and Caldwell, M.M. (1995) Ecophysiology of Photosynthesis. Springer-Verlag, Berlin.
  • [27]
    Garcia-Pichel, F, Castenholz, R.W (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Phycologia 27, 395409.
  • [28]
    Wright, S.W, Jeffrey, S.W, Mantoura, R.F.C, Llewellyn, C.A, Bjornland, T, Repeta, D, Welschmeyer, M (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser. 77, 183196.
  • [29]
    Jeffrey, S.W., Mantoura, R.F.C. and Wright, S.W. (1997) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris.
  • [30]
    Ting, C.S, Owens, T.G (1992) Limitations of the pulse-modulated technique for measuring the fluorescence characteristics of algae. Plant Physiol. 100, 367373.
  • [31]
    Lud, D, Huiskes, A.H.L, Moerdijk, T.C.W, Rozema, J (2001) The effects of altered levels of UV-B radiation on an Antarctic grass and lichen. Plant Ecol. 154, 7585.
  • [32]
    Day, T.AC.T Ruhland .Grobe, C.W, Xiong, F (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119, 2435.
  • [33]
    Ruhland, C.T, Day, T.A (2000) Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol. Plant. 109, 244251.
  • [34]
    Lüttge, U, Büdel, B, Ball, E, Strube, F, Weber, P (1995) Photosynthesis of terrestrial cyanobacteria under light and desiccation stress as expressed by chlorophyll fluorescence and gas-exchange. J. Exp. Bot. 46, 309319.
  • [35]
    Samuelsson, G, Lönnenborg, A, Rosenqvist, E, Gustafsson, P, Öquist, G (1985) Photoinhibition and reactivation of photosynthesis in the cyanobacterium Anacystis nidulans. Plant Physiol. 79, 992995.
  • [36]
    Hawes, I, Schwarz, A.M (1999) Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. J. Phycol. 35, 448459.
  • [37]
    Ehling-Schulz, M, Bilger, W, Scherer, S (1997) UV-B induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179, 19401945.
  • [38]
    Quesada, A, Vincent, W.F, Lean, D.R.S (1999) Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol. Ecol. 28, 315323.
  • [39]
    Leavitt, P.R, Schindler, D.E, Paul, A.J, Hardie, A.K, Schindler, D.W (1994) Fossil pigment records of phytoplankton in trout-stocked Alpine lakes. Can. J. Fish. Aquatic Sci. 51, 24112423.