SEARCH

SEARCH BY CITATION

References

  • [1]
    Kaye, J.P, Hart, S.C (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol. Evol. 12, 139143.
  • [2]
    Lindahl, B., Taylor, A. and Finlay, R. (2002) Defining nutritional constraints on carbon cycling – towards a less ‘phytocentric’ perspective, Plant Soil, in press.
  • [3]
    Hibbett, D.S, Gilbert, L.B, Donoghue, M.J (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407, 506508.
  • [4]
    Staaf, H, Berg, B (1982) Accumulation and release of plant nutrients in decomposing Scots pine needle litter. Long term decomposition in a Scots pine forest. II. Can. J. Bot. 60, 15611568.
  • [5]
    Fahey, T.J (1983) Nutrient dynamics of aboveground detritus in lodgepole pine (Pinus contorta ssp. latifolia) ecosystems, southeastern Wyoming. Ecol. Monogr. 53, 5172.
  • [6]
    Wells, J.M, Hughes, C, Boddy, L (1990) The fate of soil-derived phosphorus in mycelial cord systems of Phanerochaete velutina and Phallus impudicus. New Phytol. 114, 595606.
  • [7]
    Smith, S.E. and Read, D.J. (1997) Mycorrhizal Symbiosis. Academic Press, San Diego, CA.
  • [8]
    R.L GadgilP.D Gadgil Mycorrhiza and litter decomposition, Nature, 233 1971 133.
  • [9]
    Persson, T., van Oene, H., Harrison, A.F., Karlsson, P., Bauer, G., Cerny, J., Coûteaux, M.-M., Dambrine, E., Högberg, P., Kjøller, A., Matteucci, G., Rudebeck, A., Schulze, E.-D. and Paces, T. (2000) Experimental sites in the NIPHYS/CANIF project. In: Carbon and Nitrogen Cycling in European Forest Ecosystems, Ecological Studies Series Vol. 142 (Schulze, E.-D., Ed.), pp. 14–46. Springer Verlag, Heidelberg.
  • [10]
    Leake, J.R. and Read, D.J. (1997) Mycorrhizal fungi in terrestrial habitats. In: Environmental and Microbial Relationships. The Mycota, Vol. 4 (Wicklow, D.T. and Söderström, B., Eds.), pp. 281–301. Springer Verlag, Heidelberg.
  • [11]
    Bååth, E, Söderström, B (1979) Fungal biomass and fungal immobilization of plant nutrients in Swedish coniferous forest soils. Rev. Ecol. Biol. Sol. 16, 477489.
  • [12]
    Lindahl, B, Stenlid, J, Olsson, S, Finlay, R (1999) Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol. 144, 183193.
  • [13]
    Leake, J.R, Donnelly, D.P, Saunders, E.M, Boddy, L, Read, D.J (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiol. 21, 7182.
  • [14]
    Holmer, L, Stenlid, J (1993) The importance of inoculum size for the competitive ability of wood decomposing fungi. FEMS Microbiol. Ecol. 12, 169176.
  • [15]
    Stenlid, J (1985) Population structure of Heterobasidion annosum as determined by somatic incopatibility, sexual incopatibility, and isoenzyme patterns. Can. J. Bot. 63, 22682273.
  • [16]
    Duddridge, J.A (1986) The development and ultrastructure of ectomycorrhizas. III. Compatible and incompatible interactions between Suillus grevillei (Klotzsch) Sing. and 11 species of ectomycorrhizal hosts in vitro in the absence of exogenous carbohydrate. New Phytol. 103, 457464.
  • [17]
    Griffith, G.S, Rayner, A.D.M, Wildman, H.G (1994) Interspecific interactions and mycelial morphogenesis of Hypholoma fasciculare (Agaricaceae). Nova Hedwigia 59, 4775.
  • [18]
    Bending, G.D, Read, D.J (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants: V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol. 130, 401409.
  • [19]
    Garrett, S.D. (1956) Biology of Root-infecting Fungi, p. 41. Cambridge University Press.
  • [20]
    Merril, W, Cowling, E.B (1966) Role of nitrogen in wood deterioration. IV. Relationship of natural variation in nitrogen content of wood to its susceptibility to decay. Phytopathology 56, 13241325.
  • [21]
    Boyle, D (1998) Nutritional factors limiting the growth of Lentinula edodes and other white-rot fungi in wood. Soil Biol. Biochem. 30, 817823.
  • [22]
    Colpaert, J.V, Verstuyft, I (1999) The Ingestad concept in ectomycorrhizal research: possibilities and limitations. Physiol. Plant. 105, 233238.
  • [23]
    Wells, J.M, Boddy, L (1995) Translocation of soil-derived phosphorus in mycelial cord systems in relation to inoculum resource size. FEMS Microbiol. Ecol. 17, 6775.
  • [24]
    Boddy, L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 31, 185194.
  • [25]
    Wu, B, Nara, K, Hogetsu, T (1999) Competition between ectomycorrhizal fungi colonizing Pinus densiflora. Mycorrhiza 9, 151159.
  • [26]
    Schwinning, S, Weiner, J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113, 447455.
  • [27]
    Boddy, L (1999) Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia 91, 1332.
  • [28]
    Dahlberg, A, Stenlid, J (1995) Spatiotemporal patterns in ectomycorrhizal populations. Can. J. Bot. 73, 12221230.
  • [29]
    Söderström, B, Read, D.J (1987) Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilized soil. Soil Biol. Biochem. 19, 231236.
  • [30]
    Högberg, P, Nordgren, A, Buchmann, N, Taylor, A.F.S, Ekblad, A, Högberg, M.N, Nyberg, G, Ottoson-Löfvenius, M, Read, D (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789792.
  • [31]
    Egnell, G, Leijon, B (1999) Survival and growth of planted seedlings of Pinus sylvestris and Picea abies after different levels of biomass removal in clear-felling. Scand. J. For. Res. 14, 303311.
  • [32]
    Hofgaard, A (1993) Structure and regeneration patterns in a virgin Picea abies forest in northern Sweden. J. Veg. Sci. 4, 601608.
  • [33]
    Nordén, B, Appelquist, T, Lindahl, B, Henningsson, M (1999) Cubic rot fungi-corticoid fungi in highly brown rotted spruce stumps. Mycol. Helv. 10, 1324.