SEARCH

SEARCH BY CITATION

References

  • [1]
    Lovley, D.R (1997) Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J. Indust. Microbiol. Biotechnol. 18, 7581.
  • [2]
    Anderson, R.T, Lovley, D.R (2000) Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environ. Sci. Technol. 34, 22612266.
  • [3]
    Pfiffner, S.M, Palumbo, A.V, Gibson, T, Ringelberg, D.B, McCarthy, J.F (1997) Relating ground water and sediment chemistry to microbial characterization at a BTEX-contaminated site. Appl. Biochem. Biotechnol. 63–65, 775788.
  • [4]
    Edwards, E.A, Wills, L.E, Reinhard, M, Grbic Galic, D (1992) Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl. Environ. Microbiol. 58, 794800.
  • [5]
    Widdel, F. and Bak, F. (1992) In: The Prokaryotes, 2nd edn. (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K.H., Eds.), Vol. 1, pp. 583–624. Springer, New York.
  • [6]
    Castro, H.F, Williams, N.H, Ogram, O (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol. Ecol. 31, 19.
  • [7]
    Amann, R.I, Krumholz, L, Stahl, D.A (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762770.
  • [8]
    Devereux, R, Kane, M.D, Winfrey, J, Stahl, D.A (1992) Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15, 601609.
  • [9]
    Manz, W, Eisenbrecher, M, Neu, T.R, Szewzyk, U (1998) Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25, 4361.
  • [10]
    Rabus, R, Widdel, F (1996) Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil. Appl. Environ. Microbiol. 62, 12381241.
  • [11]
    Hristova, K.R, Mau, M, Zheng, D, Aminov, R.I, Mackie, R.I, Gaskins, H.R, Raskin, L (2000) Desulfotomaculum genus- and subgenus-specific 16S rRNA hybridization probes for environmental studies. Environ. Microbiol. 2, 143159.
  • [12]
    Phelps, C.D, Kerkhof, L.J, Young, L.Y (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol. Ecol. 27, 269279.
  • [13]
    Rabus, R, Fukui, M, Wilkes, H, Widdel, F (1996) Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl. Environ. Microbiol. 62, 36053613.
  • [14]
    Dowling, N.J.E, Widdel, F, White, D.C (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria. J. Gen. Microbiol. 132, 18151826.
  • [15]
    Kohring, L.L, Ringelberg, D.B, Devereux, R, Stahl, D.A, Mittelman, M.W, White, D.C (1994) Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol. Lett. 119, 303308.
  • [16]
    Oude Elferink, S.J.W.H, Boschker, H.T.S, Stams, A.J.M (1998) Identification of sulfate reducers and Syntrophobacter sp. in anaerobic granular sludge by fatty-acid biomarkers and 16S rRNA probing. Geomicrobiol. J. 15, 317.
  • [17]
    Taylor, J, Parkes, R.J (1983) The cellular fatty acids of the sulfate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol. 129, 33033310.
  • [18]
    Vainshtein, M, Hippe, H, Kroppenstedt, R.M (1992) Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15, 554566.
  • [19]
    Parkes, R.J, Dowling, N.J.E, White, D.C, Herbert, R.A, Gibson, G.R (1993) Characterization of sulphate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction. FEMS Microbiol. Ecol. 102, 235250.
  • [20]
    Taylor, J, Parkes, R.J (1985) Identifying different populations of sulfate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. J. Gen. Microbiol. 131, 631642.
  • [21]
    Boschker, H.T.S, Nold, S.C, Wellsbury, P, Bos, D, De Graaf, W, Pel, R, Parkes, R.J, Cappenberg, T.E (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392, 801805.
  • [22]
    Boschker, H, de Graaf, W, Köster, M, Meyer-Reil, L.-A, Cappenberg, T.E (2000) Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol. Ecol. 35, 97103.
  • [23]
    Bolliger, C, Höhener, P, Hunkeler, D, Häberli, K, Zeyer, J (1999) Intrinsic bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on stable carbon isotopes. Biodegradation 10, 201217.
  • [24]
    Pelz, O, Chatzinotas, A, Andersen, N, Bernasconi, S.M, Hesse, C, Abraham, W.-R, Zeyer, J (2001) Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Arch. Microbiol. 175, 270281.
  • [25]
    Dolfing, J, Zeyer, J, Binder-Eicher, P, Schwarzenbach, R.P (1990) Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch. Microbiol. 154, 336341.
  • [26]
    Chatzinotas, A, Sandaa, R.A, Schönhuber, W, Amann, R, Daae Frida, L, Torsvik, V, Zeyer, J, Hahn, D (1998) Analysis of broad-scale differences in microbial community composition of two pristine forest soils. Syst. Appl. Microbiol. 21, 579587.
  • [27]
    Stahl, D.A. and Amann, R.I. (1991) Development and Application of Nucleic Acid Probes. Wiley, New York.
  • [28]
    Meier, H, Amann, R, Ludwig, W, Schleifer, K.-H (1999) Specific oligonucleotide probes for in situ detection of a major group of Gram-positive bacteria with low DNA G+C content. Syst. Appl. Microbiol. 22, 186196.
  • [29]
    Manz, W, Amann, R, Ludwig, W, Wagner, M, Schleifer, K.H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593600.
  • [30]
    Rabus, R, Widdel, F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch. Microbiol. 163, 96103.
  • [31]
    Amann, R.I, Binder, B.J, Olson, R.J, Chisholm, S.W, Devereux, R, Stahl, D.A (1990) Combination of 16S ribosomal RNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 19191925.
  • [32]
    Abraham, W.R, Hesse, C, Pelz, O (1998) Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage. Appl. Environ. Microbiol. 64, 42024209.
  • [33]
    Rabus, R, Nordhaus, R, Ludwig, W, Widdel, F (1993) Complete oxidation of toluene under strictly anoxia conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59, 14441451.
  • [34]
    Beller, H.R, Spormann, A.M, Sharma, P.K, Cole, J.R, Reinhard, M (1996) Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl. Environ. Microbiol. 62, 11881196.
  • [35]
    White, D.C (1983) Analysis of microorganisms in terms of quantity and activity in natural environments. Symp. Soc. Gen. Microbiol. 34, 3766.
  • [36]
    Ratlege, C. and Wilkinson, S.G. (1988) In: Microbiol. lipids (Ratlege, C. and Wilkinson, S.G., Eds.), Vol. 1, p. 963. Academic Press, London.
  • [37]
    Kusel, K, Pinkart, H.C, Drake, H.L, Devereux, R (1999) Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl. Environ. Microbiol. 65, 51175123.
  • [38]
    Heider, J, Spormann, A.M, Beller, H.R, Widdel, F (1999) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol. Rev. 22, 459473.
  • [39]
    Kuever, J, Könneke, M, Galushko, A, Drzyzga, O (2001) Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov.. Int. J. Syst. Evol. Microbiol. 51, 171177.
  • [40]
    Nold, S.C, Boschker, H.T.S, Pel, R, Laanbroek, H.J (1999) Ammonium addition inhibits C-13-methane incorporation into methanotroph membrane lipids in a freshwater sediment. FEMS Microbiol. Ecol. 29, 8189.
  • [41]
    Lee, N, Nielsen, P.H, Andreasen, K.H, Juretschko, S, Nielsen, J.L, Schleifer, K.-H, Wagner, M (1999) Combination of fluorescent in situ hybridization and microautoradiography: a new tool for structure–function analyses in microbial ecology. Appl. Environ. Microbiol. 65, 12891297.
  • [42]
    Sayler, G.S, Layton, A, Lajoie, C, Bowman, J, Tschantz, M, Fleming, J.T (1995) Molecular site assessment and process monitoring in bioremediation and natural attenuation. Appl. Biochem. Biotechnol. 54, 277290.