SEARCH

SEARCH BY CITATION

References

  • [1]
    Cummings, J.H, Macfarlane, G.T (1997) Role of intestinal bacteria in nutrient metabolism. J. Parenter. Enter. Nutr. 21, 357365.
  • [2]
    Cummings, J.H, Macfarlane, G.T (1997) Colonic microflora: nutrition and health. Nutrition 13, 476478.
  • [3]
    Bergman, E.N (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567590.
  • [4]
    Jones, S.L., Snyder, J.R. and Spier, S.J. (1998) Physiology of the large intestine. In: Equine Internal Medicine (Reed, S.M. and Bayly, W.M., Eds.), pp. 651–655. W.B. Saunders, Philadelphia, PA.
  • [5]
    Argenzio, R.A, Southworth, M, Stevens, C.E (1974) Sites of organic acid production and absorption in the equine gastrointestinal tract. Am. J. Physiol. 226, 10431050.
  • [6]
    Argenzio, R.A (1975) Functions of the equine large intestine and their interrelationship in disease. Cornell Vet. 65, 303327.
  • [7]
    Julliand, V, de Vaux, A, Millet, L, Fonty, G (1999) Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Appl. Environ. Microbiol. 65, 37383741.
  • [8]
    Lin, C, Stahl, D.A (1995) Taxon-specific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations. Appl. Environ. Microbiol. 61, 13481351.
  • [9]
    Kern, D.L, Slyter, L.L, Leffel, E.C, Weaver, J.M, Oltjen, R.R (1974) Ponies vs. steers: microbial and chemical characteristics of intestinal ingesta. J. Anim. Sci. 38, 559564.
  • [10]
    Mackie, R.I, Wilkins, C.A (1988) Enumeration of anaerobic bacterial microflora of the equine gastrointestinal tract. Appl. Environ. Microbiol. 54, 21552160.
  • [11]
    Tajima, K, Aminov, R.I, Nagamine, T, Ogata, K, Nakamura, M, Matsui, H, Benno, Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol. Ecol. 29, 159169.
  • [12]
    Tajima, K, Arai, S, Ogata, K, Nagamine, T, Matsui, H, Nakamura, M, Aminov, R.I, Benno, Y (2000) Rumen bacterial community transition during adaption to high-grain diet. Anaerobe 6, 273284.
  • [13]
    Whitford, M.F, Forster, R.J, Beard, C.E, Gong, J, Teather, R.M (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4, 153163.
  • [14]
    Barcenilla, A, Pryde, S.E, Martin, J.C, Duncan, S.H, Stewart, C.S, Henderson, C, Flint, H.J (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 16541661.
  • [15]
    Pryde, S.E, Richardson, A.J, Stewart, C.S, Flint, H.J (1999) Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig. Appl. Environ. Microbiol. 65, 53725377.
  • [16]
    Wilson, K.H, Blitchington, R.B (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Appl. Environ. Microbiol. 62, 22732278.
  • [17]
    Langendijk, P.S, Schut, F, Jansen, G.J, Raangs, G.C, Kamphuis, G.R, Wilkinson, M.H, Welling, G.W (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol. 61, 30693075.
  • [18]
    Godon, J.J, Zumstein, E, Dabert, P, Habouzit, F, Moletta, R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63, 28022813.
  • [19]
    Gray, J.P, Herwig, R.P (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 62, 40494059.
  • [20]
    Wise, M.G, McArthur, J.V, Shimkets, L.J (1997) Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa. Appl. Environ. Microbiol. 63, 15051514.
  • [21]
    Stahl, D.A, Flesher, B, Mansfield, H.R, Montgomery, L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54, 10791084.
  • [22]
    Altschul, S.F, Madden, T.L, Schäffer, A.A, Zhang, J, Zhang, Z, Miller, W, Lipman, D.J (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 33893402.
  • [23]
    Felsenstein, J (1989) PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics 5, 164166.
  • [24]
    Kimura, M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111120.
  • [25]
    Saitou, N, Nei, M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406425.
  • [26]
    Felsenstein, J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.
  • [27]
    Maidak, B.L, Cole, J.R, Lilburn, T.GC.T Parker Jr.Saxman, P.R, Farris, R.J, Garrity, G.M, Olsen, G.J, Schmidt, T.M, Tiedje, J.M (2001) The RDP-II (Ribosomal database project). Nucleic Acids Res. 29, 173174.
  • [28]
    Stackebrandt, E, Goebel, B.M (1994) Taxonomic notice: a place for DNA–DNA reassociation and 16S rDNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846849.
  • [29]
    Suau, A, Bonnet, R, Sutren, M, Godon, J.J, Gibson, G.R, Collins, M.D, Dore, J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65, 47994807.
  • [30]
    Collins, M.D, Lawson, P.A, Willems, A, Cordoba, J.J, Fernandez-Garayzabal, J, Garcia, P, Cai, J, Hippe, H, Farrow, J.A (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44, 812826.
  • [31]
    Paster, B.J, Dewhirst, F.E, Olsen, I, Fraser, G.J (1994) Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J. Bacteriol. 176, 725732.
  • [32]
    Ramsak, A, Peterka, M, Tajima, K, Martin, J.C, Wood, J, Johnston, M.E, Aminov, R.I, Flint, H.J, Avgustin, G (2000) Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol. Ecol. 33, 6979.
  • [33]
    Tajima, K, Aminov, R.I, Nagamine, T, Matsui, H, Nakamura, M, Benno, Y (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67, 27662774.
  • [34]
    Ritzhaupt, A, Wood, I.S, Ellis, A, Hosie, K.B, Shirazi-Beechey, S.P (1998) Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J. Physiol. 513, 719732.
  • [35]
    Sheppach, W, Bartram, H.P, Richter, F (1998) Role of short chain fatty acids in the prevention of colorectal cancer. Eur. J. Cancer 31A, 10701080.
  • [36]
    Csordas, A. (1995) Toxicology of butyrate and short chain fatty acids. In: Role of Gut Bacteria in Human Toxicology and Pharmacology (M. Hill, Ed.), pp. 105–125. Taylor and Francis, London.
  • [37]
    Tran, C.P, Familari, M, Parker, L.M, Whitehead, R.H, Giraud, A.S (1998) Short-chain fatty acids inhibit intestinal trefoil factor gene expression in colon cancer cells. Am. J. Physiol. 275, G85G94.
  • [38]
    Treem, W.R, Ahsan, N, Shoup, M, Hyams, J.S (1994) Fecal short-chain fatty acids in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 18, 159164.
  • [39]
    Garner, H.E, Hutcheson, D.P, Coffman, J.R, Hahn, A.W, Salem, C (1977) Lactic acidosis: a factor associated with equine laminitis. J. Anim. Sci. 45, 10371041.
  • [40]
    Goodson, J, Tyznik, W.J, Cline, J.H, Dehority, B.A (1988) Effects of an abrupt diet change from hay to concentrate on microbial numbers and physical environment in the cecum of the pony. Appl. Environ. Microbiol. 54, 19461950.
  • [41]
    Owens, F.N, Secrist, D.S, Hill, W.J, Gill, D.R (1998) Acidosis in cattle: a review. J. Anim. Sci. 76, 275286.
  • [42]
    Goad, D.W, Goad, C.L, Nagaraja, T.G (1998) Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers. J. Anim. Sci. 76, 234241.
  • [43]
    Ritzhaupt, A, Ellis, A, Hosie, K.B, Shirazi-Beechey, S.P (1998) The characterization of butyrate transport across pig and human colonic luminal membrane. J. Physiol. 507, 819830.
  • [44]
    Nocek, J.E (1997) Bovine acidosis: implications on laminitis. J. Dairy Sci. 80, 10051028.