• [1]
    IPCC (2001) Climate Change 2001 (The Scientific Basis). Cambridge University Press, Cambridge.
  • [2]
    IPCC (1995) Climate Change 1994 (Radiative Forcing of Climate Change). Cambridge University Press, Cambridge.
  • [3]
    PSAB (2000) Environmental change: microbial contributions, microbial solutions. American Society for Microbiology.
  • [4]
    Lappalainen, E. (1996) Mires of Finland and their use. In: Global Peat Resources (Lappalainen, E., Ed.), pp. 69–74. International Peat Society, Jyskä.
  • [5]
    Ross, S., Gilvear, D.J., Grieve, I.C. and Willby, N. (1998) Hydrochemical-vegetation interactions within Scottish fens. In: Hydrology in a Changing Environment (Wheater, H. and Kirby, C., Eds.), pp. 431–444. John Wiley and Sons, Chichester.
  • [6]
    Kettunen, A., Kaitala, V., Alm, J., Silvola, J., Nykänen, H., Martikainen, P.J. (1996) Cross-correlation analysis of the dynamics of methane emissions from a boreal peatland. Glob. Biogeochem. Cycles 10, 457471.
  • [7]
    Saarnio, S., Saarinen, T., Vasander, H., Silvola, J. (2000) A moderate increase in the annual CH4 efflux by raised CO2 or NH4NO3 supply in a boreal oligotrophic mire. Glob. Change Biol. 6, 137144.
  • [8]
    Garcia, J.L., Patel, B.K.C., Ollivier, B. (2000) Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6, 205226.
  • [9]
    Ermler, U., Grabarse, W., Shima, S., Goubeaud, M., Thauer, R.K. (1997) Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278, 14571462.
  • [10]
    Ellermann, J., Hedderich, R., Bocher, R., Thauer, R.K. (1988) The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 172, 669677.
  • [11]
    Thauer, R.K. (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144, 23772406.
  • [12]
    Chistoserdova, L., Vorholt, J.A., Thauer, R.K., Lidstrom, M.E. (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science 281, 99102.
  • [13]
    Nolling, J., Elfner, A., Palmer, J.R., Steigerwald, V.J., Pihl, T.D., Lake, J.A., Reeve, J.N. (1996) Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int. J. Syst. Bacteriol. 46, 11701173.
  • [14]
    Springer, E., Sachs, M.S., Woese, C.R., Boone, D.R. (1995) Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 45, 554559.
  • [15]
    Krumholz, L.R., Hollenback, J.L., Roskes, S.J., Ringelberg, D.B. (1995) Methanogenesis and methanotrophy within a Sphagnum peatland. FEMS Microbiol. Ecol. 18, 215224.
  • [16]
    Lloyd, D., Thomas, K.L., Hayes, A., Hill, B., Hales, B.A., Edwards, C., Saunders, J.R., Ritchie, D.A., Upton, M. (1998) Micro-ecology of peat: minimally invasive analysis using confocal laser scanning microscopy, membrane inlet mass spectrometry and PCR amplification of methanogen-specific gene sequences. FEMS Microbiol. Ecol. 25, 179188.
  • [17]
    McDonald, I.R., Upton, M., Hall, G., Pickup, R.W., Edwards, C., Saunders, J.R., Ritchie, D.A., Murrell, J.C. (1999) Molecular ecological analysis of methanogens and methanotrophs in blanket bog peat. Microb. Ecol. 38, 225233.
  • [18]
    Nercessian, D., Upton, M., Lloyd, D., Edwards, C. (1999) Phylogenetic analysis of peat bog methanogen populations. FEMS Microbiol. Ecol. 173, 425429.
  • [19]
    Upton, M., Hill, B., Edwards, C., Saunders, J.R., Ritchie, D.A., Lloyd, D. (2000) Combined molecular ecological and confocal laser scanning microscopic analysis of peat bog methanogen populations. FEMS Microbiol. Lett. 193, 275281.
  • [20]
    Chin, K.-J., Lukow, T., Conrad, R. (1999) Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl. Environ. Microbiol. 65, 23412349.
  • [21]
    Grosskopf, R., Janssen, P.H., Liesack, W. (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol. 64, 960969.
  • [22]
    Lueders, T., Chin, K.J., Conrad, R., Friedrich, M. (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ. Microbiol. 3, 194204.
  • [23]
    Kettunen, A., Kaitala, V., Lehtinen, A., Lohila, A., Alm, J., Silvola, J., Martikainen, P.J. (1999) Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biol. Biochem. 31, 17411749.
  • [24]
    Saarnio, S., Alm, J., Silvola, J., Lohila, A., Nykänen, H., Martikainen, P.J. (1997) Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia 110, 414422.
  • [25]
    Saarnio, S., Alm, J., Martikainen, P.J., Silvola, J. (1998) Effects of raised CO2 on potential CH4 production and oxidation in, and CH4 emission from, a boreal mire. J. Ecol. 86, 261268.
  • [26]
    Niemi, R.M., Heiskanen, I., Wallenius, K., Lindstrom, K. (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J. Microbiol. Methods 45, 155165.
  • [27]
    Hales, B.A., Edwards, C., Ritchie, D.A., Hall, G., Pickup, R.W., Saunders, J.R. (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl. Environ. Microbiol. 62, 668675.
  • [28]
    Muyzer, G., Brinkhoff, T., Nubel, U., Santegoeds, C., Schafer, H. and Wawer, C. (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Molecular Microbial Ecology Manual (Akkermans, A.D.L. et al., Eds.), pp. 1–27. Kluwer Academic Publishers, Dordrecht.
  • [29]
    Mullins, T.D., Britschgi, T.B., Krest, R.L., Giovannoni, S.J. (1995) Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 40, 148158.
  • [30]
    Good, I.J. (1953) The population frequencies of species and the estimation of the population parameters. Biometrika 40, 237264.
  • [31]
    Shannon, C.E. and Weaver, W. (1963) The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
  • [32]
    Pearson, W.R., Lipman, D.J. (1988) Improved tools for biological sequence analysis. Proc. Natl. Acad. Sci. USA 85, 24442448.
  • [33]
    Higgins, D., Thompson, J., Gibson, T., Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 46734680.
  • [34]
    Ludwig, W., Schleifer, K.H. (1994) Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol. Rev. 15, 155173.
  • [35]
    Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M., Schleifer, K.H. (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554568.
  • [36]
    Stackebrandt, E. and Rainey, F.A. (1995) Partial and Complete 16S rDNA Sequences, their Use in Generation of 16S rDNA Phylogenetic Trees and their Implications in Molecular Ecological Studies, pp. 1–17. Kluwer Academic Publishers, Dordrecht.
  • [37]
    Williams, R.T., Crawford, R.L. (1984) Methane production in Minnesota peatlands. Appl. Environ. Microbiol. 47, 12661271.
  • [38]
    Alm, J., Talanov, A., Saarnio, S., Silvola, J., Ikkonen, E., Aaltonen, H., Nykänen, H., Martikainen, P.J. (1997) Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia 110, 423431.
  • [39]
    Valentine, D.W., Holland, E.A., Schimel, D.S. (1994) Ecosystem and physiological controls over methane production in northern wetlands. J. Geophys. Res. 99, 15631571.
  • [40]
    Svensson, B.H., Sundh, I. (1992) Factors affecting methane production in peat soils. Suo 43, 183190.
  • [41]
    Abram, J.W., Nedwell, D.B. (1978) Inhibition of methanogenesis by sulfate reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 117, 8992.
  • [42]
    Kotsyurbenko, O.R., Glagolev, M.V., Nozhevnikova, A.N., Conrad, R. (2001) Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol. Ecol. 38, 153159.
  • [43]
    Muyzer, G., De Waal, E.C., Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695700.
  • [44]
    Casamayor, E.O., Schafer, H., Baneras, L., Pedros-Alio, C., Muyzer, G. (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 66, 499508.
  • [45]
    Bult, C.J., White, O., Olsen, G.J., Zhou, L., Fleischmann, R.D., Sutton, G.G., Blake, J.A., FitzGerald, L.M., Clayton, R.A., Gocayne, J.D., Kerlavage, A.R., Dougherty, B.A., Tomb, J.F., Adams, M.D., Venter, J.C. (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 10581073.
  • [46]
    Lehmacher, A., Klenk, H.P. (1994) Characterization and phylogeny of mcrII, a gene cluster encoding an isoenzyme of methyl coenzyme M reductase from hyperthermophilic Methanothermus fervidus. Mol. Gen. Genet. 243, 198206.
  • [47]
    Pihl, T.D., Sharma, S., Reeve, J.N. (1994) Growth phase-dependent transcription of the genes that encode the two methyl coenzyme M reductase isoenzymes and N super(5)-methyltetrahydromethanopterin: coenzyme M methyltransferase in Methanobacterium thermoautotrophicum Delta H. J. Bacteriol. 176, 63846391.
  • [48]
    Thiele, J.H., Zeikus, J.G. (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54, 2029.
  • [49]
    Lovley, D.R. (1985) Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl. Environ. Microbiol. 49, 15301531.
  • [50]
    Lansdown, J.M., Quay, P.D., King, S.L. (1992) CH4 production via CO2 reduction in a temperate bog: a source of 13-C-depleted CH4. Geochim. Cosmochim. Acta 56, 34933503.
  • [51]
    Boone, D.R., Whitman, W.B. and Rouvière, P. (1993) Diversity and taxonomy of methanogens. In: Methanogenesis (Ferry, J.G., Ed.), pp. 35–80. Chapman and Hall, New York.
  • [52]
    Wagner, D., Pfeiffer, E.M. (1997) Two temperature optima of methane production in a typical soil of the Elbe river marshland. FEMS Microbiol. Ecol. 22, 145153.
  • [53]
    Fey, A., Conrad, R. (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl. Environ. Microbiol. 66, 47904797.