SEARCH

SEARCH BY CITATION

References

  • [1]
    Shimeta, J., Starczak, V.R., Ashiru, O.M., Zimmer, C.A. (2001) Influences of benthic boundary-layer flow on feeding rates of ciliates and flagellates at the sediment–water interface. Limnol. Oceanogr. 46, 17091719.
  • [2]
    Eckman, J.E. (1985) Flow disruption by an animal tube mimic affects sediment bacterial colonization. J. Mar. Res. 43, 419436.
  • [3]
    Berninger, U., Huettel, M. (1996) The impact of oxygen flow dynamics in photosynthetically active sediments. Aquat. Microb. Ecol. 12, 291302.
  • [4]
    Jenness, M.I., Duineveld, G.C.A. (1985) Effects of tidal currents on chlorophyll a content of sandy sediments in the southern North Sea. Mar. Ecol. Progr. Ser. 21, 283287.
  • [5]
    Dyer, K.R. (1986) Coastal and Estuarine Sediment Dynamics. John Wiley and Sons, Chichester.
  • [6]
    van Raaphorst, W., Malschaert, H., van Haren, H. (1998) Tidal resuspension and deposition of particulate matter in the Oyster Grounds, North Sea. J. Mar. Res. 56, 257291.
  • [7]
    Young, I.M., Griffiths, B.S., Robertson, W.M., McNicol, J.W. (1998) Nematode (Caenorhabditis elegans) movement in sand as affected by particle size, moisture and the presence of bacteria (Escherichia coli). Eur. J. Soil Sci. 49, 237241.
  • [8]
    Epstein, S.S. (1997) Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microb. Ecol. 34, 188198.
  • [9]
    Rocha, C. (1998) Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary. Limnol. Oceanogr. 43, 823831.
  • [10]
    Golosov, S.D., Ignatieva, N.V. (1999) Hydrothermodynamic features of mass exchange across the sediment–water interface in shallow lakes. Hydrobiology 409, 153157.
  • [11]
    Rocha, C. (2000) Density-driven convection during flooding of warm, permeable intertidal sediments: the ecological importance of the convective turnover pump. J. Sea Res. 43, 114.
  • [12]
    Webb, J.E., Theodor, J. (1968) Irrigation of submerged marine sands through wave action. Nature 220, 682683.
  • [13]
    Thibodeaux, L.J., Boyle, J.D. (1987) Bedform-generated convective transport in bottom sediment. Nature 325, 341343.
  • [14]
    Forster, S., Huettel, M., Ziebis, W. (1996) Impact of boundary layer flow velocity on oxygen utilization in coastal sediments. Mar. Ecol. Progr. Ser. 143, 173185.
  • [15]
    Huettel, M., Ziebis, W., Forster, S., G.W. Luther, III (1998) Advective transport affecting metal and nutrient distribution and interfacial fluxes in permeable sediments. Geochim. Cosmochim. Acta 62, 613631.
  • [16]
    Pilditch, C.A., Emerson, C.W., Grant, J. (1998) Effect of scallop shells and sediment grain size on phytoplankton flux to the bed. Cont. Shelf Res. 17, 18691885.
  • [17]
    Falter, J.L., Sansone, F.J. (2000) Hydraulic control of pore water geochemistry within the oxic-suboxic zone of a permeable sediment. Limnol. Oceanogr. 45, 550557.
  • [18]
    Huettel, M., Rusch, A. (2000) Transport and degradation of phytoplankton in permeable sediment. Limnol. Oceanogr. 45, 534549.
  • [19]
    Goni-Urriza, M., de Montaudouin, X., Guyoneaud, R., Bachelet, G., de Wit, R. (1999) Effect of macrofaunal bioturbation on bacterial distribution in marine sandy sediments, with special reference to sulphur-oxidising bacteria. J. Sea Res. 41, 269279.
  • [20]
    Rijnaarts, H.H.M., Norde, W., Bouwer, E.J., Lyklema, J., Zehnder, A.J.B. (1996) Bacterial deposition in porous media: Effects of cell-coating, substratum hydrophobicity, and electrolyte concentration. Environ. Sci. Technol. 30, 28772883.
  • [21]
    Simoni, S.F., Bosma, T.N.P., Harms, H., Zehnder, A.J.B. (2000) Bivalent cations increase both the subpopulation of adhering bacteria and their adhesion efficiency in sand columns. Environ. Sci. Technol. 34, 10111017.
  • [22]
    Heise, S., Gust, G. (1999) Influence of the physiological status of bacteria on their transport into permeable sediments. Mar. Ecol. Progr. Ser. 190, 141153.
  • [23]
    Newby, D.T., Pepper, I.L. and Maier, R.M. (2000) Microbial transport. In: Environmental Microbiology (Maier, R.M., Pepper, I.L. and Gerba, C.P., Eds.), pp. 147–175. Academic Press, London.
  • [24]
    Shimeta, J., Jumars, P.A., Lessard, E.J. (1995) Influences of turbulence on suspension feeding by planktonic protozoa: experiments in laminar shear fields. Limnol. Oceanogr. 40, 845859.
  • [25]
    Logan, B.E., Kirchman, D.L. (1991) Uptake of dissolved organics by marine bacteria as a function of fluid motion. Mar. Biol. 111, 175181.
  • [26]
    Kiørboe, T., Ploug, H., Thygesen, U.H. (2001) Fluid motion and solute distribution around sinking aggregates. I. Small-scale fluxes and heterogeneity of nutrients in the pelagic environment. Mar. Ecol. Progr. Ser. 211, 113.
  • [27]
    Llobet-Brossa, E., Rosselló-Mora, R., Amann, R. (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl. Environ. Microbiol. 64, 26912696.
  • [28]
    Wieringa, E.B.A., Overmann, J., Cypionka, H. (2000) Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Environ. Microbiol. 2, 417427.
  • [29]
    Scala, D.J., Kerkhof, L.J. (2000) Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Appl. Environ. Microbiol. 66, 19801986.
  • [30]
    Keen, T.R., Glenn, S.M. (1995) A coupled hydrodynamic-bottom boundary layer model of storm and tidal flow in the Middle Atlantic Bight of North America. J. Phys. Oceanogr. 25, 391406.
  • [31]
    Boehme, S.E., Sabine, C.L., Reimers, C.E. (1998) CO2 fluxes from a coastal transect: a time series approach. Mar. Chem. 63, 4967.
  • [32]
    Kerkhof, L.J., Voytek, M.A., Sherrell, R.M., Millie, D., Schofield, O. (1999) Variability in bacterial community structure during upwelling in the coastal ocean. Hydrobiology 401, 139148.
  • [33]
    Reimers, C.E., Stecher, H.A., Taghon, G.L. and Fuller, C.M. (2002) In situ measurements of solute transport velocities in permeable shelf sands. AGU Ocean Sciences Meeting, Honolulu, HI.
  • [34]
    Saager, P.M., Sweerts, J.-P., Ellermeijer, H.J. (1990) A simple pore-water sampler for coarse, sandy sediments of low porosity. Limnol. Oceanogr. 35, 747751.
  • [35]
    Hall, P.O.J., Aller, R.C. (1992) Rapid, small-volume, flow injection analysis for ΣCO2 and NH4+ in marine and freshwaters. Limnol. Oceanogr. 37, 11131119.
  • [36]
    Zimmermann, R., Iturriaga, R., Becker-Birck, J. (1978) Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. Microbiol. 36, 926935.
  • [37]
    Epstein, S.S., Rossel, J. (1995) Enumeration of sandy sediment bacteria: search for optimal protocol. Mar. Ecol. Progr. Ser. 117, 289298.
  • [38]
    King, L.K., Parker, B.C. (1988) A simple, rapid method for enumerating total viable and metabolically active bacteria in groundwater. Appl. Environ. Microbiol. 54, 16301631.
  • [39]
    Preuß, G. and Hupfer, M. (1998) Ermittlung von Bakterienzahlen in aquatischen Sedimenten. In: Mikrobiologische Charakterisierung aquatischer Sedimente (VAAM, Eds.), pp. 2–34. Oldenbourg, Munich.
  • [40]
    Boetius, A., Lochte, K. (1994) Regulation of microbial enzymatic degradation of organic matter in deep-sea sediments. Mar. Ecol. Progr. Ser. 104, 299307.
  • [41]
    Bélanger, C., Desrosiers, B., Lee, K. (1997) Microbial extracellular enzyme activity in marine sediments: extreme pH to terminate reaction and sample storage. Aquat. Microb. Ecol. 13, 187196.
  • [42]
    Manz, W., Amann, R., Ludwig, W., Wagner, M., Schleifer, K.-H. (1992) Phylogenetic oligodeoxynucleotide probes for major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593600.
  • [43]
    Snaidr, J., Amann, R., Huber, I., Ludwig, W., Schleifer, K.-H. (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63, 28842896.
  • [44]
    Daims, H., Brühl, A., Amann, R., Schleifer, K.-H., Wagner, M. (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434444.
  • [45]
    Ravenschlag, K., Sahm, K., Amann, R. (2001) Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl. Environ. Microbiol. 67, 387395.
  • [46]
    Neef, A., Amann, R., Schlesner, H., Schleifer, K.-H. (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144, 32573266.
  • [47]
    Bouchez, T., Patureau, D., Dabert, P., Juretschko, S., Doré, J., Delgenès, P., Moletta, R., Wagner, M. (2000) Ecological study of a bioaugmentation failure. Environ. Microbiol. 2, 179190.
  • [48]
    Manz, W., Eisenbrecher, M., Neu, T.R., Szewzyk, U. (1998) Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25, 4361.
  • [49]
    Nogales, B., Moore, E.R.B., Llobet-Brossa, E., Rosselló-Mora, R., Amann, R., Timmis, K.N. (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl. Environ. Microbiol. 67, 18741884.
  • [50]
    Sachs, L. (1997) Angewandte Statistik. Springer-Verlag, Berlin.
  • [51]
    Ritzrau, W., Graf, G. (1992) Increase of microbial biomass in the benthic turbidity zone of Kiel Bight after resuspension by a storm event. Limnol. Oceanogr. 37, 10811086.
  • [52]
    Harvey, H.R., Tuttle, J.H., Bell, J.T. (1995) Kinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim. Cosmochim. Acta 59, 33673377.
  • [53]
    Sinsabaugh, R.L., Findlay, S. (1995) Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microb. Ecol. 30, 127141.
  • [54]
    Smayda, T.J. (1978) From phytoplankters to biomass. In: Phytoplankton Manual (Sournia, A., Ed.), pp. 273–279. UNESCO, Paris.
  • [55]
    Westrich, J.T., Berner, R.A. (1984) The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol. Oceanogr. 29, 236249.
  • [56]
    Rusch, A., Forster, S., Huettel, M. (2001) Bacteria, diatoms and detritus in an intertidal sandflat subject to advective transport across the water-sediment interface. Biogeochemistry 55, 127.
  • [57]
    Meyer-Reil, L.-A. (1987) Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Appl. Environ. Microbiol. 53, 17481755.
  • [58]
    Vetter, Y.-A., Deming, J.W. (1994) Extracellular enzyme activity in the Arctic Northeast Water polynya. Mar. Ecol. Progr. Ser. 114, 2334.
  • [59]
    Fabiano, M., Danovaro, R. (1998) Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antarctica). Appl. Environ. Microbiol. 64, 38383845.
  • [60]
    Poremba, K., Hoppe, H.-G. (1995) Spatial variation of benthic microbial production and hydrolytic enzymatic activity down the continental slope of the Celtic Sea. Mar. Ecol. Progr. Ser. 118, 237245.
  • [61]
    Goto, N., Mitamura, O., Terai, H. (2001) Biodegradation of photosynthetically produced extracellular organic carbon from intertidal benthic algae. J. Exp. Mar. Biol. Ecol. 257, 7386.
  • [62]
    Grossart, H.-P., Ploug, H. (2001) Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267277.
  • [63]
    Howard-Jones, M.H., Frischer, M.E., Verity, P.G. (2001) Determining the physiological status of individual bacterial cells. Methods Microbiol. 30, 175206.
  • [64]
    Thimsen, C.A., Keil, R.G. (1998) Potential interactions between sedimentary dissolved organic matter and mineral surfaces. Mar. Chem. 62, 6576.
  • [65]
    Ding, X., Henrichs, S.M. (2002) Adsorption and desorption of proteins and polyamino acids by clay minerals and marine sediments. Mar. Chem. 77, 225237.
  • [66]
    Dauwe, B., Middelburg, J.J., Herman, P.M.J. (2001) The effect of oxygen on the degradability of organic matter in subtidal and intertidal sediments of the North Sea area. Mar. Ecol. Progr. Ser. 215, 1322.
  • [67]
    Shewan, J.M., McMeekin, T.A. (1983) Taxonomy (and ecology) of Flavobacterium and related genera. Annu. Rev. Microbiol. 37, 233252.
  • [68]
    DeLong, E.F., Franks, D.G., Alldredge, A.L. (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38, 924934.
  • [69]
    Cottrell, M.T., Kirchman, D.L. (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 16921697.
  • [70]
    Weller, R., Glöckner, F.O., Amann, R. (2000) 16S rRNA-targeted oligonucleotide probes for the in situ detection of members of the phylum Cytophaga-Flavobacterium-Bacteroides. Syst. Appl. Microbiol. 23, 107114.
  • [71]
    Nold, S.C., Zwart, G. (1998) Patterns and governing forces in aquatic microbial communities. Aquat. Ecol. 32, 1735.
  • [72]
    Cottrell, M.T., Kirchman, D.L. (2000) Community composition of marine bacterioplankton determined by 16S rRNA clone libraries and fluorescence in situ hybridisation. Appl. Environ. Microbiol. 66, 51165122.
  • [73]
    Riemann, L., Steward, G.F., Azam, F. (2000) Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol. 66, 578587.
  • [74]
    Fandino, L.B., Riemann, L., Steward, G.F., Long, R.A., Azam, F. (2001) Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat. Microb. Ecol. 23, 119130.
  • [75]
    Glöckner, F.O., Fuchs, B.M., Amann, R. (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridisation. Appl. Environ. Microbiol. 65, 37213726.
  • [76]
    Fuerst, J.A. (1995) The planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology 141, 14931506.
  • [77]
    Gray, J.P., Herwig, R.P. (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 62, 40494059.