SEARCH

SEARCH BY CITATION

References

  • Alexander E, Pham D & Steck TR (1999) The viable-but-nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl Environ Microbiol 65: 37543756.
  • Almås ÅR, Mulder J & Bakken LR (2005) Trace metal exposure of soil bacteria depends on their position in the soil matrix. Environ Sci Technol 39: 59275932.
  • Amann R, Ludwig W & Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143169.
  • Bakken LR (1997) Culturable and nonculturable bacteria in soil. Modern Soil Microbiology, (ElsasJD, TrevorsJT & WellingtonEMH, eds), pp. 4761. Marcel Dekker Inc., New York.
  • Berg J, Tom-Petersen A & Nybroe O (2005) Copper amendment to agricultural soil selects for bacterial antibiotic resistance in the field. Lett Appl Microbiol 40: 146151.
  • Bloem J & Breure AM (2003) Microbial indicators. Bioindicators and Biomonitors, Vol. 6 (MarkertBA, BreureAM & ZechmeisterHG, eds), pp. 259282. Elsevier, Amsterdam.
  • Brandt KK, Hesselsøe M, Roslev P, Henriksen K & Sørensen J (2001) Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl Environ Microbiol 67: 24892498.
  • Bremmer JJ (1996) Nitrogen-total. Methods of Soil Analysis, Part 3, (SparksDL, Page AL, Helmke PA, et al., eds), pp. 10851122. Soil Science Society of America Inc. and American Society of Agronomy, Madison, WI.
  • Chaudri AM, Allain CMG, Barbosa-Jefferson V, Nicholson FA, Chambers BJ & McGrath SP (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long-term field experiment. Plant Soil 221: 167179.
  • Cho JC & Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66: 54485456.
  • Dahlin S, Witter E, Mårtensson AM, Turner A & Bååth E (1997) Where's the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biol Biochem 29: 14051415.
  • Eisenstadt E, Carlton BC & Brown BJ (1994) Gene mutation. Methods for General and Molecular Bacteriology, (GerhardtP, MurrayRGE, WoodWA & KriegNR, eds), pp. 297316. American Society for Microbiology, Washington, DC.
  • Ellis RJ, Neish B, Trett MW, Best JG, Weightman AJ, Morgan P & Fry JC (2001) Comparison of microbial and meiofaunal community analysis for determining impact of heavy metal contamination. J Microbiol Meth 45: 171185.
  • Ellis RJ, Best JG, Fry JC, Morgan P, Neish B, Trett MW & Weightman AJ (2002) Similarity of microbial and meiofaunal community analysis for mapping ecological effects of heavy-metal contamination in soil. FEMS Microbiol Ecol 20: 113122.
  • Ellis RJ, Morgan P, Weightman AJ & Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69: 32233230.
  • Epstein L & Bassein S (2001) Pesticide applications of copper on perennial crops in California, 1993 to 1998. J Environ Qual 30: 18441847.
  • Frostegård Å, Tunlid A & Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59: 36053617.
  • Gans J, Wolinsky M & Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 13871390.
  • Gee GW & Bauder JW (1986) Particle-size analysis. Methods of Soil Analysis, Part 1, (KluteA, ed), pp. 383411. Soil Science Society of America Inc. and American Society of Agronomy, Madison, WI.
  • Giller KE, Witter E & McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils–a review. Soil Biol Biochem 30: 13891414.
  • Giovannoni SJ (1991) The Polymerase Chain Reaction. Nucleic Acid Techniques in Bacterial Systematics (StackebrandtE, ed), pp. 177201. John Wiley & Sons, New York.
  • Gould WD, Hagedorn C, Bardinelli TR & Zablotowicz M (1985) New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl Environ Microbiol 49: 2835.
  • Griffiths BS, Díaz-Ravina M, Ritz K, McNicol JW, Ebblewhite N & Bååth E (1997) Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiol Ecol 24: 103112.
  • Hattori T, Mitsui H, Haga H, Wakao N, Shikano S, Gorlach K, Kasahara Y, El-Beltagy A & Hattori R (1997) Advances in soil microbial ecology and biodiversity. Antonie van Leeuwenhoek 72: 2128.
  • Hill TCJ, Walsh KA, Harris JA & Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43: 111.
  • Johnsen K & Nielsen P (1999) Diversity of Pseudomonas strains isolated with King's B and Gould's S1 agar determined by repetitive extragenic palindromic-polymerase chain reaction, 16S rDNA sequencing and Fourier transform infrared spectroscopy characterisation. FEMS Microbiol Lett 173: 155162.
  • Kent AD & Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56: 211236.
  • Korthals GW, Alexiev AD, Lexmond TM, Kammenga JE & Bongers T (1996) Long-term effects of copper and pH on the nematode community in an agroecosystem. Environ Toxicol Chem 15: 979985.
  • Kozdrój J & Van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32: 14051417.
  • Kragelund L, Leopold K & Nybroe O (1996) Outer membrane protein heterogeneity within Pseudomonas fluorescens and P. putida and use of an OprF antibody as a probe for rRNA homology group I pseudomonads. Appl Environ Microbiol 62: 480485.
  • Ludwig W & Klenk H-P (2001) Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. Bergey's Manual of Systematic Bacteriology, Vol. 1 (BooneDR, CastenholzRW & GarrityGM, eds), pp. 4965. Springer-Verlag, New York.
  • Lugtenberg BJJ & Bloemberg GV (2004) Life in the rhizosphere. Pseudomonas – Genomics, Life Style and Molecular Architecture, Vol. 1 (RamosJL, ed), pp. 403430. Klüwer, New York.
  • Lübeck M, Alekhina IA, Lübeck PS, Jensen DF & Bulat SA (1999) Delineation of Trichoderma harzianum into two different genotypic groups by a highly robust fingerprinting method, UP-PCR, and UP-PCR product cross-hybridization. Mycol Res 103: 289298.
  • Mantovi P, Bonazzi G, Maestri E & Marmiroli N (2003) Accumulation of copper and zinc from liquid manure in agricultural soils and crop plants. Plant Soil 250: 249257.
  • Moffett BF, Nicholson FA, Uwakwe NC, Chambers BJ, Harris JA & Hill TCJ (2003) Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol Ecol 43: 1319.
  • National Institute of Standards and Technology (1993) Certificate of Analysis–Standard Reference Material 2709. National Institute of Standards and Technology, Gaithersburg, MD.
  • Nielsen O & Lübeck PS (2002) Characterisation of symbionts of entomopathogenic nematodes by universally primed-PCR (UP-PCR) and UP-PCR product cross-hybridisation. FEMS Microbiol Lett 215: 6368.
  • Nielsen MN, Sørensen J, Fels J & Pedersen HC (1998) Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64: 35633569.
  • Rajapaksha RMCP, Tobor-Kaplon MA & Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70: 29662973.
  • Sauvé S, McBride MB, Norwell WA & Hendershot WH (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Pollut 100: 133149.
  • Smit E, Leeflang P & Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol Ecol 23: 249261.
  • Sørensen J & Nybroe O (2004) Pseudomonas in the soil environment. Pseudomonas – Genomics, Life Style and Molecular Architecture, Vol. 1 (RamosJL, ed), pp. 369401. Klüwer, New York.
  • Tarnawski S, Hamelin J, Locatelli L, Aragno M & Fromin N (2003) Examination of Gould's modified S1 (mS1) selective medium and Angle's non-selective medium for describing the diversity of Pseudomonas spp. in soil and root environments. FEMS Microbiol Ecol 45: 97104.
  • Tom-Petersen A, Husbond C & Nybroe O (2001) Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol Ecol 38: 5967.
  • Tom-Petersen A, Leser T, Marsh TL & Nybroe O (2003) Effects of copper amendment on the bacterial community in agricultural soil analysed by the T-RFLP technique. FEMS Microbiol Ecol 46: 5362.
  • Tom-Petersen A, Hansen HCB & Nybroe O (2004) Time and moisture effects on total and bioavailable copper in soil solutions. J Environ Qual 33: 505512.
  • United States Environmental Protection Agency (US EPA) (1996) Microwave Assisted Acid Digestion on Siliceous and Organically Based Matrices. Method 3052. US EPA, Washington, DC.
  • Vulkan R, Zhao F, Barbosa-Jefferson V, Preston S, Paton GI, Tipping E & McGrath SP (2000) Copper speciation and impacts on bacterial biosensors in the porewater of copper-contaminated soils. Environ Sci Technol 34: 51155120.
  • Walsh UF, Morrissey JP & O'Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12: 289295.
  • Worm J & Nybroe O (2001) Input of protein to lake water microcosms affects expression of proteolytic enzymes and the dynamics of Pseudomonas spp. Appl Environ Microbiol 67: 49554962.
  • Zhou J, Xia B, Treves DS, Wu L-Y, Marsh TL, O'Neill RV, Palumbo AV & Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68: 326334.