SEARCH

SEARCH BY CITATION

Keywords:

  • 16S rRNA gene;
  • diversity;
  • colonization;
  • volcano;
  • lava flow

Abstract

Volcanic activity creates new landforms that can change dramatically over time as a consequence of biotic succession. Nonetheless, volcanic deposits present severe constraints for microbial colonization and activity. We have characterized bacterial diversity on four recent deposits at Kilauea volcano, Hawaii (KVD). Much of the diversity was either closely related to uncultured organisms or distinct from any reported 16S rRNA gene sequences. Diversity indices suggested that diversity was highest in a moderately vegetated 210-year-old ash deposit (1790-KVD), and lowest for a 79-year-old lava flow (1921-KVD). Diversity for a 41-year-old tephra deposit (1959-KVD) and a 300-year-old rainforest (1700-KVD) reached intermediate values. The 1959-KVD and 1790-KVD communities were dominated by Acidobacteria, Alpha- and Gammaproteobacteria, Actinobacteria, Cyanobacteria, and many unclassified phylotypes. The 1921-KVD, an unvegetated low pH deposit, was dominated by unclassified phylotypes. In contrast, 1700-KVD was primarily populated by Alphaproteobacteria with very few unclassified phylotypes. Similar diversity indices and levels of trace gas flux were found for 1959-KVD and 1790-KVD; however, statistical analyses indicated significantly different communities. This study not only showed that microorganisms colonize recent volcanic deposits and are able to establish diverse communities, but also that their composition is governed by variations in local deposit parameters.