SEARCH

SEARCH BY CITATION

References

  • Anderson SA, Drever JI, Frost CD & Holden P (2000) Chemical weathering in the Foreland of a retreating glacier. Geochim Cosmochim Ac 64: 11731189.
  • Battin TJ, Wille A, Sattler B & Psenner R (2001) Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol 67: 799807.
  • Battin TJ, Wille A, Psenner R & Richter A (2004) Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1: 159171.
  • Björnsson H, Gjessing Y, Hamran S-E, Hagen JO, Liestøl O, Pálsson F & Erlingsson B (1996) The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J Glaciol 42: 2332.
  • Chen F, Lu JR, Binder BJ, Liu YC & Hodson RE (1992) Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Appl Environ Microbiol 67: 539545.
  • Christner BC, Mosley-Thompson E, Thompson LG & Reeve JN (2003) Bacterial recovery from ancient glacial ice. Environ Microbiol 5: 433436.
  • Dastych H (2005) Macrobiotus ramoli sp. nov., a new tardigrade species from the nival zone of the Ötztal Alps, Austria (Tardigrada). Mitt Hamb Zool Mus Inst 102: 2135.
  • De Smet WH & Van Romptu EA (1994) Rotifera and tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belg J Zool 124: 2737.
  • Ellis-Evans JC, Laybourn-Parry J, Galchenko V, Mylnikov AP & Petz W (2001) Freshwater environments of kongsfjorden, Spitsbergen (Svalbard): environmental characteristics and microbial plankton activity. Arch Hydrobiol 152: 609632.
  • Elser J, Stabler L & Hassett PR (1995) Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative study. Appl Environ Microbiol 9: 91299140.
  • Elster J, Svoboda J, Komarék J & Marvan P (1997) Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79°N, Central Ellesmere Island, Canada. Arch Hydrobiol Suppl Algol Stud 85: 5793.
  • Engstrom DR, Fritz SG, Almendinger AE & Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408: 161166.
  • Felip M, Sattler B, Psenner R & Catalan J (1995) Highly active microbial communities in the ice and snow cover of high mountain lakes. Appl Environ Microbiol 61: 23942401.
  • Felip M, Pace ML & Cole JJ (1996) Regulation of planktonic bacterial growth rates: the effects of temperature and resources. Microb Ecol 31: 1528.
  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ & Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47: 329340.
  • Fountain AG, Tranter M, Nylen TH, Lewis KJ & Mueller DR (2004) Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctic. J Glaciol 50: 3545.
  • Granéli W, Bertilsson S & Philibert A (2004a) Phosphorus limitation of bacterial growth in high Arctic lakes and ponds. Aquat Sci 66: 430439.
  • Granéli W, Carlsson P & Bertilsson S (2004b) Bacterial abundance, production, and organic carbon limitation in the Southern Ocean (39–62°S, 4–14°E) during the Austral summer 1997/1998. Deep Sea Res II 51: 25692582.
  • Griebler C, Mindl B & Slezak D (2001) Combining DAPI and SYBR green II for the enumeration of total bacterial numbers in aquatic sediments. Int Rev Hydrobiol 86: 453465.
  • Gurung TB & Urabe J (1999) Temporal and vertical difference in factors limiting growth rate of heterotrophic bacteria in Lake Biwa. Microb Ecol 38: 136145.
  • Hagen JO & Sætrang A (1991) Radio-echo soundings of sub-polar glaciers with low-frequency radar. Polar Res 9: 99107.
  • Hoch MP & Kirchman DL (1993) Seasonal and inter-annual variability in bacterial production and biomass in a temperate estuary. Mar Ecol Prog Ser 98: 283295.
  • Hodson AJ (in press a) Phosphorus in glacial meltwaters. Glacier Science and Environmental Change (KnightP, ed). Blackwells.
  • Hodson AJ (in press b) Snowmelt biogeochemistry in a maritime Antarctic glacial ecosystem. Wat Resour Res.
  • Hodson AJ, Tranter M, Gurnell AM, Clark MJ & Hagen JO (2002) The hydrochemistry of Bayelva, a High Arctic proglacial stream in Svalbard. J Hydrol 257: 91114.
  • Hodson AJ, Mumford PN & Lister D (2004) Suspended sediment and phosphorus in proglacial rivers: bioavailability and potential impacts upon the P status of ice-marginal receiving waters. Hydrol Process 18: 24092422.
  • Hodson AJ, Mumford PN, Kohler J & Wynn PM (2005) The High Arctic ecosystem: new insights from nutrient budgets. Biogeochemistry 72: 233256.
  • Kirchman DL, Keil RG, Simon M & Welschmeyer NA (1993) Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep Sea Res 40: 967988.
  • Laybourn-Parry J, Henshaw T, Jones DJ & Quayle W (2004) Bacterioplankton production in freshwater Antarctic lakes. Freshwater Biol 49: 735744.
  • Marshall AW (1996) Biological particles over Antarctic. Nature 383: 280.
  • McKay CP, Clow G, Wharton RA Jr & Squires SW (1985) Thickness of ice on perennially frozen lakes. Nature 313: 561562.
  • Mikucki J, Foreman CF, Sattler B, Lyons WB & Priscu JC (2004) Geomicrobiology of blood falls: an iron-rich saline discharge at the terminus of the Taylor glacier, Antarctic. Aquat Geochem 10: 199220.
  • Milner AM & Bailey RG (1989) Salmonid colonization of new streams in glacier bay National Park, Alaska. Aquacult Fish Manag 20: 179192.
  • Mueller DR & Pollard WH (2004) Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol 27: 6674.
  • Mueller DR, Vincent WF, Pollard WH & Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia 123: 173197.
  • Muyzer G, De Waal EC & Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695700.
  • Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30: 101111.
  • Nei M & Li W-H (1979) Mathematical model for studying genetic variations in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 52695273.
  • Oerlemans J (1998) Chapter Modelling Glacier Fluctuations. Into the Second Century of Worldwide Glacier Monitoring: Prospects and Strategies, Vol.56. pp. 8594. UNESCO, Paris.
  • Pearce DA (2000) A rapid, sensitive method for monitoring bacterioplankton community dynamics, applied to Antarctic freshwater lakes. Polar Biol 23: 352356.
  • Pomeroy LR & Deibel D (1986) Temperature regulation of bacterial activity during the spring bloom, in Newfoundland coastal waters. Science 233: 359361.
  • Pomeroy LR & Wiebe WJ (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol 23: 187204.
  • Priscu JP, Adams EE, Pearl HW, Fritsen CH, Dore JE, Lisle JT, Wolf CF & Mikucki JA (2002) Perennial Antarctic Lake Ice: a refuge for cyanobacteria in an extreme environment. Life in Ancient Ice (RogersS & CastelloJ, eds). Princeton Press, Princeton.
  • Psenner R, Sattler B, Wille A, Fritsen CH, Priscu JC, Felip M & Catalan J (1999) Lake ice microbial communities in alpine and Antarctic lakes. Cold Adapted Organisms, Ecology, Physiology, Enzymology, and Molecular Biology (MargesinR & SchinnerF, eds), pp. 1731. Springer Verlag, Heidelberg.
  • Řehák J, Ourhabka V & Braun M (1990) New information about the interior drainage of a subpolar glacier and the structure of medial moraines of the Southwest Spitsbergen. Stud Carstol 1: 1556.
  • Säwström C, Mumford P, Marshall W, Hodson A & Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in Arctic glaciers (Svalbard 79°N). Polar Biol 25: 591596.
  • Schmid M & Ambuehl H (1965) Die Bestimmung geringster Mengen Gesamtphosphor in Wasser und Biomasse. Schweiz Z Hydrol 27: 184192.
  • Sharp JH & Peltzer ET (1993) Procedures subgroup report. Mar Chem 41: 3749.
  • Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H & Tranter M (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27: 107110.
  • Simon M & Azam F (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51: 201213.
  • Skidmore ML, Foght JM & Sharp MJ (2000) Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66: 32143220.
  • Takeuchi N, Koshima S, Yoshimura S, Seko K & Fujita K (2000) Characteristics of cryoconite holes on a Himalayan glacier, Yala glacier Central Nepal. Bull Glaciol Res 17: 5159.
  • Toolan T, Wehr JD & Findlay S (1991) Inorganic phosphorus stimulation of bacterioplankton production in a meso-eutrophic lake. Appl Environ Microbiol 57: 20742078.
  • Tranter M, Fountain AG, Fristen CH, Lyons WB, Priscu JC, Statham PJ & Welch KA (2004) Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol Process 18: 379387.
  • Van Der Wal R & Loonen MJJE (1998) Goose droppings as food for reindeer. Can J Zool 76: 11171122.
  • Wharton RA Jr, McKay CP, Simmons GM Jr & Parker BC (1985) Cryoconite holes on glaciers. BioScience 35: 499503.
  • White PA, Kalff J, Rasmussen JB & Gasol JM (1991) The effects of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb Ecol 21: 99118.
  • Wiebe WJ, Sheldon WM Jr & Pomeroy LR (1992) Bacterial growth in the cold: evidence for an enhanced substrate requirement. Appl Environ Microbiol 58: 359364.
  • Yoshimura Y, Koshima S & Ohtani S (1997) A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arct Antarct Alp Res 29: 126137.