SEARCH

SEARCH BY CITATION

References

  • Alemayehu D, Gordon LM, O'Mahony MM, O'Leary ND & Dobson ADW (2004) Cloning and functional analysis gene involved in indigo production by gene disruption of a novel and fluoranthene metabolism in Pseudomonas alcaligenes PA-10. FEMS Microbiol Lett 239: 285293.
  • Andreae WA & Van Ysselstein MWH (1960) Studies on 3-indoleacetic acid metabolism. V. Effect of calcium ions on 3-indoleacetic acid uptake and metabolism by pea roots. Plant Physiol 35: 220224.
  • Aparicio ML, Ruizamil M, Vicente M & Canovas JL (1971) Role of phosphoglycerate kinase in metabolism of Pseudomonas putida. FEBS Lett 14: 326328.
  • Arias-Barrau E, Sandoval N, Naharro G, Olivera ER & Luengo JM (2005) A two-component hydroxylase involved in the assimilation of 3-hydroxyphenyl acetate in Pseudomonas putida. J Biol Chem 280: 2643526447.
  • Bertani I, Kojic M & Venturi V (2001) Regulation of the p-hydroxybenzoic acid hydroxylase gene (pobA) in plant-growth-promoting Pseudomonas putida WCS358. Microbiology 147: 16111620.
  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F & Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74: 874880.
  • Bouillenne-Walrand M, Leyh C & Gaspar T (1963) Mise en évidence d'un protecteur de l'acide beta indol-acétique dans un extrait de feuilles de Zea mays L. Bull Soc Royale Sci Liege 32: 262268.
  • Chandramohan D & Mahadevan A (1968) Indole acetic acid metabolism in soils. Curr Sci 37: 112113.
  • Chebrou H, Bigey F, Arnaud A & Galzy P (1996) Study of the amidase signature group. Biochim Biophys Acta-Prot Struc Mol Enzymol 1298: 285293.
  • Choi KY, Kim D, Koh SC, So JS, Kim JS & Kim E (2004) Molecular cloning and identification of a novel oxygenase gene specifically induced during the growth of Rhodococcus sp strain T104 on limonene. J Microbiol 42: 160162.
  • Cilia E, Fabbri A, Uriani M, Scialdone GG & Ammendola S (2005) The signature amidase from Sulfolobus solfataricus belongs to the CX3C subgroup of enzymes cleaving both amides and nitriles – Ser195 and Cys145 are predicted to be the active site nucleophiles. FEBS J 272: 47164724.
  • Civolani C, Barghini P, Roncetti AR, Ruzzi M & Schiesser A (2000) Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Appl Environ Microbiol 66: 23112317.
  • Claus G & Kutzner HJ (1983) Degradation of indole by Alcaligenes spec. System Appl Microbiol 4: 169180.
  • Corstjens PLAM, De Vrind JPM, Westbroek P & De Vrind-de Jong EW (1992) Enzymatic iron oxidation by Leptothrix discophora– identification of an iron-oxidizing protein. Appl Environ Microbiol 58: 450454.
  • Costacurta A & Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21: 118.
  • Dennis JJ & Zylstra GJ (1998) Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64: 27102715.
  • Deslandes B, Gariepy C & Houde A (2001) Review of microbiological and biochemical effects of skatole on animal production. Livestock Production Sci 71: 193200.
  • Drewlo S, Bramer CO, Madkour M, Mayer F & Steinbuchel A (2001) Cloning and expression of a Ralstonia eutropha HF39 gene mediating indigo formation in Escherichia coli. Appl Environ Microbiol 67: 19641969.
  • Ernstsen A, Sandberg G, Crozier A & Wheeler CT (1987) Endogenous indoles and the biosynthesis and metabolism of indole 3-acetic acid in cultures of Rhizobium phaseoli. Planta 171: 422428.
  • Figurski DH & Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76: 16481652.
  • Galán B, Diaz E, Prieto MA & Garcia JL (2000) Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new flavin: NAD(P)H reductase subfamily. J Bacteriol 182: 627636.
  • Gieg LM, Otter A & Fedorak PM (1996) Carbazole degradation by Pseudomonas sp LD2: metabolic characteristics and the identification of some metabolites. Environ Sci Technol 30: 575585.
  • Glass NL & Kosuge T (1986) Cloning of the gene for indole acetic acid–lysine synthetase from Pseudomonas syringae subsp. savastanoi. J Bacteriol 166: 598603.
  • Gottfert M, Rothlisberger S, Kundig C, Beck C, Marty R & Hennecke H (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183: 14051412.
  • Gravel V, Antoun H & Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid, (IAA). Soil Biol Biochem 39: 19681977.
  • Hart S, Kirby R & Woods DR (1990) Structure of a Rhodococcus gene encoding pigment production in Escherichia coli. J Gen Microbiol 136: 13571363.
  • Harwood CS & Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Ann Rev Microbiol 50: 553590.
  • Hedden P & Phillips AL (2000) Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol 11: 130137.
  • Hoa LT-P, Nomura M & Tajima S (2004) Characterization of bacteroid proteins in soybean nodules formed with Bradyrhizobium japonicum USDA110. Microb Environ 19: 7175.
  • Jarabo-Lorenzo A, Perez-Galdona R, Vega-Hernandez M, Trujillo J & Leon-Barrios M (1998) Indole-3-acetic acid catabolism by bacteria belonging to the Bradyrhizobium genus. Biological Nitrogen Fixation for the 21st Century (ElmerichC, KondorosiA & NewtonWE, eds), p. 484. Kluwer Academic Publishers, Dordrecht, the Netherlands.
  • Jensen JB, Egsgaard H, Vanonckelen H & Jochimsen BU (1995) Catabolism of indole-3-acetic-acid and 4-chloroindole-3-acetic and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 177: 57625766.
  • Jimenez JI, Minambres B, Garcia JL & Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4: 824841.
  • Kaneko T, Nakamura Y, Sato S et al. (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9: 189197.
  • Kim IC & Oriel PJ (1995) Characterization of the Bacillus stearothermophilus Br219 phenol hydroxylase gene. Appl Environ Microbiol 61: 12521256.
  • King EO, Ward MK & Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44: 301307.
  • Kogl F, Haagen-Smit AJ & Erxleben H (1934) Uber eine neues Auxin (‘Hetero-auxin’) aus Harn Zeit. Physiol Chem 228: 90103.
  • Krupasagar V & Sequeira L (1969) Auxin destruction by Marasmius perniciosus. Am J Bot 56: 390397.
  • Kuo TT & Kosuge T (1969) Factors influencing production and further metabolism of indole-3-acetic acid by Pseudomonas savastanoi. J Gen Appl Microbiol 15: 51.
  • Leuthner B & Heider J (2000) Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of beta oxidation of the intermediate benzylsuccinate. J Bacteriol 182: 272277.
  • Leveau JHJ & Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71: 23652371.
  • Leveau JHJ, Gerards S, De Boer W & Van Veen JA (2004) Phylogeny-function analysis of (meta)genomic libraries: screening for expression of ribosomal RNA genes by large-insert library fluorescent in situ hybridization (LIL-FISH). Environ Microbiol 6: 990998.
  • Liang O, Takeo M, Chen M, Zhang W, Xul YQ & Lin M (2005) Chromosome-encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruhatensis AD9. Microbiology 151: 34353446.
  • Libbert E & Risch H (1969) Interactions between plants and epiphytic bacteria regarding their auxin metabolism. V. Isolation and identification of IAA-producing and -destroying bacteria from pea plants. Physiol Plant 22: 5158.
  • Libbert E, Wichner S, Schiewer U, Risch H & Kaiser W (1966) Influence of epiphytic bacteriae on auxin metabolism. Planta 68: 327.
  • Lim HK, Chung EJ, Kim JC et al. (2005) Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl Environ Microbiol 71: 77687777.
  • Martens DA & Frankenberger WT (1993) Stability of microbial-produced auxins derived from l-tryptophan added to soil. Soil Sci 155: 263271.
  • Mascher T, Helmann JD & Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70: 910.
  • Meyer F, Goesmann A, McHardy AC et al. (2003) GenDB – an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31: 21872195.
  • Mino Y (1970) Studies on destruction of indole-3-acetic acid by a species of Arthrobacter. IV. Decomposition products. Plant Cell Physiol 11: 129.
  • Molenaar D, Van Der Rest ME, Drysch A & Yucel R (2000) Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum. J Bacteriol 182: 68846891.
  • Nelson KE, Weinel C, Paulsen IT et al. (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4: 799808.
  • Nienaber A, Huber A, Gottfert M, Hennecke H & Fischer HM (2000) Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization. J Bacteriol 182: 14721480.
  • Nishijyo T, Haas D & Itoh Y (2001) The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol 40: 917931.
  • Okada H, Negoro S, Kimura H & Nakamura S (1983) Evolutionary adaptation of plasmid-encoded enzymes for degrading nylon oligomers. Nature 306: 203206.
  • Patricelli MP & Cravatt BF (2000) Clarifying the catalytic roles of conserved residues in the amidase signature family. J Biol Chem 275: 1917719184.
  • Patten CL & Glick BR (1996) Bacterial biosynthesis on indole-3-acetic acid. Can J Microbiol 42: 207220.
  • Pollmann S, Neu D & Weiler EW (2003) Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole 3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62: 293300.
  • Proctor MH (1958) Bacterial dissimilation of indoleacetic acid – new route of breakdown of the indole nucleus. Nature 181: 13451345.
  • Riviere J, Laboureu P & Sechet M (1966) Bacterial degradation of indole 3-acetic acid and of gibberellin A3 in soil. Ann Physiol Vegetale 8: 209.
  • Sambrook J, Maniatis T & Fritsch EF (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
  • Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN, Gerstein M & Snyder M (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21: 601614.
  • Solaiman DKY & Somkuti GA (1996) Expression of a rhodococcal indigo gene in Streptococcus thermophilus. Biotechnol Lett 18: 1924.
  • Spaepen S, Vanderleyden J & Remans R (2007) Indole 3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31: 425448.
  • Strzelczyk E, Kampert M & Dahm H (1973) Production and decomposition of indoleacetic-acid (IAA) by microorganisms isolated from root zone of 2 crop plants. Acta Microbiol Polonica Series B-Microbiol Appl 5: 7179.
  • Sukchawalit R, Loprasert S, Atichartpongkul S & Mongkolsuk S (2001) Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modifications. J Bacteriol 183: 44054412.
  • Teale WD, Paponov IA & Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7: 847859.
  • Tomaszewski M & Thimann KV (1966) Interactions of phenolic acids metallic ions and chelating agents on auxin-induced growth. Plant Physiol 41: 14431454.
  • Tsubokura S, Sakamoto Y & Ichihara K (1961) The bacterial decomposition of indoleacetic acid. J Biochem 49: 38.
  • Urata M, Miyakoshi M, Kai S et al. (2004) Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2-dioxygenase, on the carbazole-degradative plasmid pCAR1 of Pseudomonas resinovorans strain CA10. J Bacteriol 186: 68156823.
  • Venter JC, Remington K, Heidelberg JF et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 6674.
  • Wichner S (1968) Beziehungen zwischen Pflanzen und epiphytischen Bakterien hinsichtlich ihres Auxinstoffwechsels. IV. IES-Zerstoerung und Produktion der IES-Oxydase durch epiphytische Bakterien. Flora, Abt A 159: 141166.
  • Yokoyama MT, Carlson JR & Holdeman LV (1977) Isolation and characteristics of a skatole-producing Lactobacillus sp from the bovine rumen. Appl Environ Microbiol 34: 837842.