SEARCH

SEARCH BY CITATION

References

  • Aguiar P, Beveridge TJ & Reysenbach AL (2004) Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54: 3339.
  • Aiuppa A, Avino R, Brusca L et al. (2006) Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chem Geol 229: 313330.
  • Anderson GL, Williams J & Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267: 2367423682.
  • Arnórsson S (2003) Arsenic in surface- and up to 90 °C ground waters in a basalt area, N-Iceland: processes controlling its mobility. Appl Geochem 18: 12971312.
  • Ballantyne JM & Moore JN (1988) Arsenic geochemistry in geothermal systems. Geochim Cosmochim Acta 52: 475483.
  • Barns SM, Takala SL & Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65: 17311737.
  • Bruneel O, Personné JC, Casiot C, Leblanc M, Elbaz-Poulichet F, Mahler BJ, Flèche AL & Grimont PAD (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). J Appl Microbiol 95: 492499.
  • Cherry JA, Shaikh AU, Tallman DE & Nicholson RV (1979) Arsenic species as an indicator of redox conditions in groundwater. J Hydrol 43: 373392.
  • Christensen OD, Capuano RA & Moore JN (1983) Trace-element distribution in an active hydrothermal system, Roosevelt Hot Springs Thermal Area, Utah. J Volcanol Geoth Res 16: 99129.
  • Criaud A & Fouillac C (1989) The distribution of arsenic(III) and arsenic(V) in geothermal waters – Examples from the Massif Central of France, the Island of Dominica in the Leeward Islands of the Caribbean, the Valles Caldera of New-Mexico, United States, and southwest Bulgaria. Chem Geol 76: 259269.
  • Cummings DE, Caccavo F, Fendorf S & Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33: 723729.
  • Donahoe-Christiansen J, D'Imperio S, Jackson CR, Inskeep WP & McDermott TR (2004) Arsenite-oxidizing hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl Environ Microbiol 70: 18651868.
  • Eary LE & Schramke JA (1990) Rates of inorganic oxidation reactions involving dissolved oxygen. Chemical Modeling of Aqueous Systems II (MelchiorDC & BassettRL, eds), pp. 379396. American Chemical Society, Washington, DC.
  • Eder W & Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6: 309318.
  • Ellis AJ & Mahon WAJ (1977) Chemistry and Geothermal Systems. Academic Press, New York.
  • Gihring TM & Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204: 335340.
  • Gihring TM, Druschel GK, McCleskey RB, Hamers RJ & Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35: 38573862.
  • Goldberg S & Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234: 204216.
  • Green HH (1918) Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank. S Afr J Sci 14: 465467.
  • Heck KL, Vanbelle G & Simberloff D (1975) Explicit calculation of rarefaction diversity measurement and determination of sufficient sample size. Ecology 56: 14591461.
  • Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R & Stetter KO (1998) Thermocrinis ruber gen. nov., sp. a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64: 35763583.
  • Hugenholtz P, Pitulle C, Hershberger KL & Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180: 366376.
  • Hurlbert SH (1971) Nonconcept of species diversity – critique and alternative parameters. Ecology 52: 577586.
  • Ilyaletdinov AN & Abdrashitova SA (1981) Autotrophic oxidation of arsenic by Pseudomonas arsenitoxidans. Mikrobiologiya 50: 197204.
  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP & McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3: 532542.
  • Koch I, Feldmann J, Wang LX, Andrewes P, Reimer KJ & Cullen WR (1999) Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. Sci Total Environ 236: 101117.
  • Koski AK & Wood SA (2004) The Geochemistry of Geothermal Waters in the Alvord Basin, Southeastern Oregon. Water-Rock Interaction, 27 June–2 July, 2004. Saratoga Springs, New York.
  • Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics (StackebrandtE & GoodfellowM, eds), pp. 115147. John Wiley & Sons, New York.
  • Langner HW, Jackson CR, McDermott TR & Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ Sci Technol 35: 33023309.
  • Lebrun E, Brugna M, Baymann F, Müller D, Lievremont D, Lett M-C & Nitschke W (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20: 686693.
  • Ludwig W, Strunk O, Westram R et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 13631371.
  • Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM & Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29: 173174.
  • Müller J (1999) Determination of inorganic arsenic (III) in groundwater using hydride generation coupled to ICP-AES (HG-ICP-AES) under variable sodium boron hydride (NaBH4) concentrations. Frensen J Anal Chem 363: 572576.
  • Nold SC & Ward DM (1995) Diverse Thermus species inhabit a single hot spring microbial mat. Syst Appl Microbiol 18: 274278.
  • Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA & Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68: 47954802.
  • Reysenbach AL, Wickham GS & Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone-National-Park. Appl Environ Microbiol 60: 21132119.
  • Rhine ED, Phelps CD & Young LY (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8: 899908.
  • Romero L, Alonso H, Campano P, Fanfani L, Cidu R, Dadea C, Keegan T, Thornton I & Farago M (2003) Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Appl Geochem 18: 13991416.
  • Sakamoto H, Kamada M & Yonehara N (1988) The contents and distributions of arsenic, antimony, and mercury in geothermal waters. Bull Chem Soc Jpn 61: 34713477.
  • Salmassi TM, Venkateswaren K, Satomi M, Nealson KH, Newman DK & Hering JG (2002) Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol J 19: 5366.
  • Salmassi TM, Walker JJ, Newman DK, Leadbetter JR, Pace NR & Hering JG (2006) Community and cultivation analysis of arsenite oxidizing biofilms at Hot Creek. Environ Microbiol 8: 5059.
  • Santini JM & Vanden Hoven RN (2004) Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186: 16141619.
  • Santini JM, Sly LI, Schnagl RD & Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66: 9297.
  • Santini JM, Sly LI, Wen A, Comrie D, DeWulf-Durand P & Macy JM (2002) New arsenite-oxidizing bacteria isolated from Australian gold mining environments-phylogenetic relationships. Geomicrobiol J 19: 6776.
  • Saul DJ, Rodrigo AG, Reeves RA, Williams LC, Borges KM, Morgan HW & Bergquist PL (1993) Phylogeny of twenty Thermus isolates constructed from 16S rRNA gene sequence data. Int J Syst Bacteriol 43: 754760.
  • Stauffer RE & Thompson JM (1984) Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta 48: 25472561.
  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods) 4.0.
  • Takai K, Hirayama H, Sakihama Y, Inagaki F, Yamato Y & Horikoshi K (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68: 30463054.
  • Takai K, Kobayashi H, Nealson KH & Horikoshi K (2003) Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53: 823827.
  • Tanaka T (1990) Arsenic in the natural-environment. 2. Arsenic concentrations in thermal waters from Japan – review. Applied Organometallic Chemistry 4: 197203.
  • Tipper JC (1979) Rarefaction and rarefiction – use and abuse of a method in paleoecology. Paleobiology 5: 423434.
  • Vanden Hoven RN & Santini JM (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. BBA-Bioenergetics 1656: 148155.
  • Wilkie JA & Hering JG (1998) Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environ Sci Technol 32: 657662.
  • Wolin EA, Wolin MJ & Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238: 28822886.
  • Yokoyama T, Takahashi Y & Tarutani T (1993) Simultaneous determination of arsenic and arsenious acids in geothermal water. Chem Geol 103: 103111.