SEARCH

SEARCH BY CITATION

References

  • Alexander JK (1961) Characteristics of cellobiose phosphorylase. J Bacteriol 81: 903910.
  • Allen MS & Mertens DR (1988) Evaluating constraints on fiber digestion by rumen microbes. J Nutr 118: 261270.
  • Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143169.
  • Ankrah P, Loerch SC & Dehority BA (1990) Sequestration, migration and lysis of protozoa in the rumen. J Gen Microbiol 136: 18691875.
  • Ash RW & Dobson A (1963) The effect of absorption on the acidity of rumen contents. J Physiol 169: 3961.
  • Atasoglu C, Newbold CJ & Wallace RJ (2001) Incorporation of [15N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17. App Environ Microbiol 67: 28192822.
  • Avgustin G, Wallace RJ & Flint HJ (1997) Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int J Syst Bacteriol 47: 284288.
  • Bauchop T (1979) The rumen anaerobic fungi: colonizers of plant fibre. Ann Rech Vet 10: 246248.
  • Bayer EA, Belaich JP, Shoham Y & Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Ann Rev Microbiol 58: 521554.
  • Béra-Maillet C, Ribot Y & Forano E (2004) Fiber-degrading systems of different strains of the genus Fibrobacter. Appl Environ Microb 70: 21722179.
  • Bond DR, Tsai BM & Russell JB (1999) Physiological characterization of Streptococcus bovis mutants that can resist 2-deoxyglucose-induced lysis. Microbiology 145: 29772985.
  • Broderick GA & Merchen NR (1992) Markers for quantifying microbial protein synthesis in the rumen. J Dairy Sci 75: 26182632.
  • Bryant MP (1973) Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed Proc 32: 18091813.
  • Bryant MP & Burkey LA (1953a) Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J Dairy Sci 36: 205217.
  • Bryant MP & Burkey LA (1953b) Numbers and some predominant groups of bacteria in the rumen of cows fed different rations. J Dairy Sci 36: 218224.
  • Bryant MP & Doetsch RN (1954) A study of actively cellulolytic rod-shaped bacteria of the bovine rumen. J Dairy Sci 37: 11761183.
  • Bryant MP & Small N (1956) The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J Bacteriol 72: 1631.
  • Bryant MP, Robinson IM & Chu H (1959) Observations on the nutrition of Bacteroides succinogenes– a ruminal cellulolytic bacterium. J Dairy Sci 42: 18311847.
  • Callaway TR & Russell JB (2000) Variations in the ability of ruminal gram-negative Prevotella species to resist monensin. Curr Microbiol 40: 185190.
  • Chen J & Weimer P (2001) Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiology 147: 2130.
  • Chen J, Stevenson DM & Weimer PJ (2004) Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus that inhibits growth of Ruminococcus flavefaciens. Appl Environ Microb 70: 31673170.
  • Chow JM & Russell JB (1992) Effect of pH and monensin on glucose transport by Fibrobacter succinogenes, a cellulolytic ruminal bacterium. Appl Environ Microb 58: 11151120.
  • Dawes EA (1985) Starvation, survival and energy reserves. Bacteria in Their Natural Environments (FletcherM & FloodgateGD, eds), pp. 4379. Academic Press, London.
  • Dehority BA (1973) Hemicellulose degradation by rumen bacteria. Fed Proc 32: 18191824.
  • Dehority BA & Tirabasso PA (2000) Antibiosis between ruminal bacteria and ruminal fungi. Appl Environ Microb 66: 29212927.
  • Demain AL, Newcomb M & Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol R 69: 124154.
  • Fields MW, Russell JB & Wilson DB (1998) The role of ruminal carboxymethylcellulases in the degradation of b-glucans from cereal grain. FEMS Microbiol Ecol 27: 261268.
  • Fields MW, Mallik S & Russell JB (2000) Fibrobacter succinogenes S85 ferments ball-milled cellulose as fast as cellobiose until cellulose surface area is limiting. Appl Microbiol Biot 54: 570574.
  • Firkins JL, Weiss WP & Piwonka EJ (1992) Quantification of intraruminal recycling of microbial nitrogen using nitrogen-15. J Anim Sci 70: 32233233.
  • Forsberg CW & Lam K (1977) Use of the adenosine 5′-triphosphate as an indicator of the microbiota biomass in rumen contents. Appl Environ Microb 33: 528537.
  • Fox DG, Tedeschi LO, Tylutki TP, Russell JB, Van Amburgh ME, Chase LE, Pell AN & Overton TR (2004) The Cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Anim Feed Sci Tech 112: 2978.
  • Frey JC, Angert ER & Pell AN (2006) Assessment of biases associated with profiling simple, model communities using terminal-restriction fragment length polymorphism-based analyses. J Microbiol Meth 67: 919.
  • Gong J & Forsberg CW (1989) Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Appl Environ Microb 55: 30393044.
  • Groom MJ, Gray EM & Townsend PA (2008) Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv Biol 22: 602609.
  • Gupta RS (2004) The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi and Bacteroidetes. Crit Rev Microbiol 30: 123143.
  • Halliwell G & Bryant MP (1968) The cellulolytic activity of pure strains of bacteria from the rumen of cattle. J Gen Microbiol 32: 441448.
  • Herbert D, Elsworth R & Telling RC (1956) The continuous culture of bacteria: a theoretical and experimental study. J Gen Microbiol 14: 601622.
  • Hiltner P & Dehority BA (1983) Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl Environ Microb 46: 642648.
  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW & Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804807.
  • Hristov AN & Broderick GA (1996) Synthesis of microbial protein in ruminally cannulated cows fed alfalfa silage, alfalfa hay, or corn silage. J Dairy Sci 79: 16271637.
  • Hugenholtz P, Goebel BM & Pace NR (1998) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180: 47654774.
  • Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14: 149.
  • Hungate RE (1966) The Rumen and its Microbes. Academic Press, New York.
  • Iannotti EL, Kafkewitz D, Wolin MJ & Bryant MP (1973) Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 114: 12311240.
  • Ingraham JL, Madloe O & Neidhardt FC (1983) Growth of the Bacterial Cell, pp. 227265. Sinauer Associates, Sunderland, MA.
  • Jung HG, Engels FM & Weimer PJ (2004) Degradation of alfalfa stem cell walls by five species of rumen bacteria. Neth J Agr Sci 52: 1128.
  • Klopfenstein TJ, Purser DB & Tyznik WJ (1966) Effects of defaunation on feed digestibility, rumen metabolism, and blood metabolites. J Anim Sci 25: 765773.
  • Koch AL (1991) The wall of bacteria serves the roles that mechano-proteins do in eukaryotes. FEMS Microbiol Rev 88: 1526.
  • Kohn RA (2003) Mechanistic equations to represent digestion and fermentation. Adv Exp Med Biol 537: 253265.
  • Koike S, Pan J, Kobayashi Y & Tanaka K (2003) Kinetics of in sacco fiber attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J Dairy Sci 86: 14291435.
  • Lechtenberg VL, Colenbrander VF, Bauman LF & Rhykerd CL (1974) Effect of lignin on rate of in vitro cell wall and cellulose disappearance in corn. J Dairy Sci 39: 11651169.
  • Lee SS, Ha JK & Cheng KJ (2000) Relative contribution of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl Environ Microb 66: 38073813.
  • Lin C & Stahl DA (1995) Comparative analyses reveal a highly conserved endoglucanase in the cellulolytic genus Fibrobacter. J Bacteriol 177: 25432549.
  • Ling JR & Buttery PJ (1978) The simultaneous use of ribonucleic acid, 35S, 2,6-diaminopimelic acid and 2-aminoethylphosphonic acid as markers for microbial nitrogen entering the duodenum of sheep. Br J Nutr 39: 165.
  • Lu Y, Zhang YH & Lynd LR (2006) Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. P Natl Acad Sci USA 103: 1616516577.
  • Lynd LR, Weimer PJ, Van Zyl WH & Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Molec Biol R 66: 506677.
  • Maas LK & Glass TL (1991) Cellobiose uptake by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes. Can J Microbiol 37: 141147.
  • Maglione G & Russell JB (1997) The adverse effect of nitrogen limitation and excess-cellobiose on Fibrobacter succinogenes. Appl Microbiol Biot 48: 720725.
  • Maglione G, Russell J & Wilson DB (1997) Kinetics of cellulose digestion by Fibrobacter succinogenes S85. Appl Environ Microb 63: 665669.
  • Marr AG, Nilson EH & Clark DJ (1963) The maintenance requirement of Escherichia coli. Ann NY Acad Sci 102: 536548.
  • Masson HA, Denholm AM & Ling JR (1991) In vivo metabolism of 2,2′-diaminopimelic acid from gram-positive and gram-negative bacterial cells by ruminal microorganisms and ruminants and its use as a marker of bacterial biomass. Appl Environ Microb 57: 17141720.
  • Montgomery L, Flesher B & Stahl D (1988) Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int J Syst Bacteriol 38: 430436.
  • Morrison M, Nelson KE, Forsberg CW, Mackie RI, White BA, Russell JB & Wilson DB (2003) Genomics of ruminal cellulose-degrading bacteria. Biotechnology of Lignocellulose Degradation and Biomass Utilization (OhmiyaK, KaritaS, SakkaM, SakkaK, KimuraT & OnishiY, eds), pp. 265273. Uni-Publishers Co. Ltd, Tokyo, Japan.
  • Mouriño F, Akkarawongsa R & Weimer PJ (2001) pH at the initiation of cellulose digestion determines cellulose digestion rate in vitro. J Dairy Sci 48: 848859.
  • Nagaraja TG & Chengappa MM (1998) Liver abscesses in feedlot cattle: a review. J Anim Sci 76: 287298.
  • Nolan JV & Dobos RC (2005) Nitrogen transactions in ruminants. Quantitative Aspects of Ruminant Digestion and Metabolism (DijkstraJM, ForbesJ & FranceJ, eds), pp. 177206. CABI Publishing, Wallingford, UK.
  • Nolan JV, Norton BW & Leng RA (1976) Further studies of the dynamics of nitrogen metabolism in sheep. Br J Nutr 35: 127147.
  • Odenyo AA, Mackie RI, Stahl DA & White BA (1994a) The use of 16S rRNA targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl Environ Microb 60: 36883696.
  • Odenyo AA, Mackie RI, Stahl DA & White BA (1994b) The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl Environ Microb 60: 36973703.
  • Owens FN, Secrist DS, Hill WJ & Gill DR (1998) Acidosis in cattle: a review. J Anim Sci 76: 275286.
  • Park JS, Russell JB & Wilson DB (2007) Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85. Anaerobe 13: 8388.
  • Pegden RS, Larson MA, Grant RJ & Morrison M (1998) Adherence of the gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel from of cellulose-binding protein which belongs to the Pil family of proteins. J Bacteriol 180: 59215592.
  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lon Ser B 163: 224231.
  • Pitt RE, Van Kessel JS, Fox DG, Pell AN, Barry MC & Van Soest PJ (1996) Prediction of volatile fatty acids and pH within the net carbohydrate and protein system. J Anim Sci 74: 226244.
  • Purser DB & Buechler SM (1966) Amino acid composition of rumen organisms. J Dairy Sci 49: 8193.
  • Qi M, Nelson KE, Daugherty SC, Nelson WC, Hance IR, Morrison M & Forsberg CW (2004) Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J Bacteriol 187: 37393751.
  • Qi M, Jun HS & Forsberg CW (2007) Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases. Appl Environ Microb 73: 60986105.
  • Richmond B (2004) An Introduction to Systems Thinking. Isee Systems Inc., p. 1, Lebanon, NH. http://www.fi.muni.cz/~xpelanek/IV109/jaro07/IST.pdf
  • Russell JB (1985) Fermentation of cellodextrins by cellulolytic and non-cellulolytic rumen bacteria. Appl Environ Microb 49: 572576.
  • Russell JB (1987) Effect of extracellular pH on the growth and protonmotive force of Bacteroides succinogenes, a cellulolytic ruminal bacterium. Appl Environ Microb 53: 23792383.
  • Russell JB (2002) Rumen Microbiology and its Role in Ruminant Nutrition. JB Russell Publishing Co., Ithaca, NY. p. 1.
  • Russell JB & Baldwin RL (1979) Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture. Appl Environ Microb 37: 537543.
  • Russell JB & Cook GM (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59: 4862.
  • Russell JB & Diez-Gonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microbiol Physiol 39: 205234.
  • Russell JB & Dombrowski DB (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl Environ Microb 39: 604610.
  • Russell JB & Wilson DB (1996) Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J Dairy Sci 79: 15031509.
  • Satter LD (1985) Symposium: protein and fiber digestion, passage and utilization in lactating cows. J Dairy Sci 69: 27342749.
  • Scheifinger CC & Wolin MJ (1973) Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl Microbiol 26: 789795.
  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D & Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319: 12381240.
  • Shi Y & Weimer PJ (1992) Response surface analysis of the effect of pH and dilution rate on the fermentation of Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Appl Environ Microb 58: 25832591.
  • Shi Y & Weimer PJ (1996) Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria. Appl Environ Microb 62: 10841088.
  • Stanier RY, Adelber EA & Ingraham JL (1976) The exploitation of microorganisms by man. The Microbial World, pp. 831854. Prentice-Hall, Englewood Cliffs, NJ.
  • Stern MD, Varga GA, Clark JH, Firkins JL, Huber JT & Palmquist DL (1994) Evaluation of chemical and physical properties of feeds that affect protein metabolism in the rumen. J Dairy Sci 77: 27622786.
  • Stevenson DM & Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biot 75: 165174.
  • Stewart CS, Paniagua C, Dinsdale D, Cheng KJ & Garrow SH (1981) Selective isolation and characteristics of Bacteroides succinogenes from the rumen of a cow. Appl Environ Microb 41: 504510.
  • Stouthamer AH (1973) A theoretical study of the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39: 545565.
  • Thomas S & Russell JB (2003) The effect of cellobiose, glucose and cellulose on the survival of Fibrobacter succinogenes A3C cultures grown under ammonia limitation. Curr Microbiol 48: 219223.
  • Thompson J & Thomas TD (1977) Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy sources for sugar accumulation by starved cells of Streptococcus lactis. J Bacteriol 130: 583595.
  • Van Kessel JS & Russell JB (1997) The endogenous polysaccharide utilization rate of mixed ruminal bacteria and the effect of energy starvation on ruminal fermentation rates. J Dairy Sci 80: 24422448.
  • Van Soest PJ (1973) The uniformity and nutritive availability of cellulose. Fed Proc 32: 18041808.
  • Waldo DR, Smith LW & Cox EL (1972) Model of cellulose disappearance from the rumen. J Dairy Sci 55: 125129.
  • Weimer PJ (1992) Cellulose degradation by ruminal microorganisms. Crit Rev Biotechnol 12: 189223.
  • Weimer PJ (1993a) Effect of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture. Arch Microbiol 160: 288294.
  • Weimer PJ (1993b) Microbial and molecular mechanisms of cell wall degradation-session synopsis. Forage Cell Wall Digestion (JungHG, BuxtonBR, HartfieldRD & RalphJ, eds), pp. 485498. American Society of Agronomy, Madison, WI.
  • Weimer PJ, Lopez-Guisa JM & French AD (1990) Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro. Appl Environ Microb 56: 24212429.
  • Weimer PJ, Stevenson DM, Mertens DR & Thomas EE (2008) Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Appl Microbiol Biot 80: 135145.
  • Weller RA & Pilgrim AF (1974) Passage of protozoa and volatile fatty acids from the rumen of the sheep and from a continuous in vitro fermentation system. Br J Nutr 32: 341351.
  • Wells JE & Russell JB (1994) The endogenous metabolism of Fibrobacter succinogenes and its relationship to cellobiose transport, viability and cellulose digestion. Appl Microbiol Biot 41: 471476.
  • Wells JE & Russell JB (1996a) The effect of growth and starvation on the lysis of the ruminal cellulolytic bacterium Fibrobacter succinogenes. Appl Environ Microbiol 62: 13421346.
  • Wells JE & Russell JB (1996b) Why do many ruminal bacteria die and lyse so quickly? J Dairy Sci 79: 14871495.
  • Wells JE, Russell JB, Shi Y & Weimer PJ (1995) Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Appl Environ Microb 61: 17571762.
  • Williams AG & Coleman GS (1997) The rumen protozoa. The Rumen Microbial Ecosystem (HobsonPN & StewartCS, eds), pp. 73139. Blackie Academic & Professional, London.
  • Wolin MJ & Miller TL (1983) Interactions of microbial populations in cellulose fermentation. Fed Proc 42: 109113.
  • Wood TM, Wilson CA, McCrae SI & Joblin KN (1986) A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiol Lett 34: 3740.