SEARCH

SEARCH BY CITATION

References

  • Ahrenholtz I, Harms K, De Vries J & Wackernagel W (2000) Increased killing of Bacillus subtilis on the hair roots of transgenic T4 lysozyme-producing potatoes. Appl Environ Microbiol 66: 18621865.
  • Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143169.
  • Bais HP, Weir TL, Perry LG, Gilroy S & Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57: 234266.
  • Bent SJ & Forney LJ (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2: 689695.
  • Berg G, Roskot N, Steidle A, Eberl L, Zock A & Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68: 33283338.
  • Berg G, Eberl L & Hartmann A (2005a) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 71: 42034213.
  • Berg G, Krechel A, Ditz M, Faupel A, Ulrich A & Hallmann J (2005b) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51: 215229.
  • Berg G, Zachow C, Lottmann J, Götz M, Costa R & Smalla K (2005c) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 171: 42034213.
  • Berg G, Opelt K, Zachow C, Lottmann J, Götz M, Costa R & Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56: 250261.
  • Böhm M, Hurek T & Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 20: 526533.
  • Bremer C, Braker G, Matthies D, Reuter A, Engels C & Conrad R (2007) Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl Environ Microbiol 73: 68766884.
  • Briones AM, Okabe S, Umemiya Y, Ramsing N, Reichardt W & Okuyama H (2002) Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Appl Environ Microbiol 68: 30673075.
  • Broeckling CD, Broz AK, Bergelson J, Manter DK & Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74: 738744.
  • Bruinsma M, Kowalchuk GA & Veen JA (2002) Effects of Genetically Modified Plants on Soil Ecosystem. Ponsen and Looyen BV, Wageningen, the Netherlands.
  • Buchanan BB, Gruissem W & Jones RL (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MA.
  • Butler JL, Williams MA, Bottomley PJ & Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69: 67936800.
  • Castaldini M, Turrini A, Sbrana C et al. (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71: 67196729.
  • Compant S, Duffy B, Nowak J, Clement C & Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71: 49514959.
  • Costa R, Götz M, Mrotzek N, Lottmann J, Berg G & Smalla K (2006a) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56: 236249.
  • Costa R, Salles JF, Berg G & Smalla K (2006b) Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants. Environ Microbiol 8: 21362149.
  • Costa R, Gomes NC, Krögerrecklenfort E, Opelt K, Berg G & Smalla K (2007) Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses. Environ Microbiol 9: 22602273.
  • Czárán TL, Hoekstra RF & Pagie L (2002) Chemical warfare between microbes promotes biodiversity. P Natl Acad Sci USA 99: 786790.
  • Dakora FD & Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 13: 3547.
  • Da Silva KRS, Salles JF, Seldin L & Van Elsas JD (2003) Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J Microbiol Meth 54: 213231.
  • De Angelis KM, Firestone MK & Lindow SE (2007) Sensitive whole-cell biosensor suitable for detecting a variety of N-acyl homoserine lactones in intact rhizosphere microbial communities. Appl Environ Microbiol 73: 37243727.
  • Debette J & Blondeau R (1980) Présence de Pseudomonas maltophilia dans la rhizosphère de quelques plantes cultivées. Can J Microbiol 26: 460463.
  • Dekkers LC, Van Der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM & Lugtenberg BJJ (1998) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11: 763771.
  • De Werra P, Baehler E, Huser A, Keel C & Maurhofer M (2008) Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry. Appl Environ Microbiol 74: 13391349.
  • Dohrmann A & Tebbe CC (2005) Effect of elevated tropospheric ozone on the structure of bacterial communities inhabiting the rhizosphere of herbaceous plants native to Germany. Appl Environ Microbiol 71: 77507758.
  • Düring K, Porsch P, Fladung M & Lörz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium E. carotovora. Plant J 3: 587598.
  • Eberl L, Molin S & Giskov M (1999) Surface motility of Serratia liquefaciens MG1. J Bacteriol 181: 17031712.
  • Erkel C, Kube M, Reinhardt R & Liesack W (2006) Genome of rice cluster I archaea – the key methane producers in the rice rhizosphere. Science 313: 370372.
  • Fierer N & Jackson RB (2006) The diversity and biogeography of soil bacterial communities. P Natl Acad Sci USA 103: 626631.
  • Garbeva P, Van Veen JA & Van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42: 243270.
  • Germida JJ & Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fert Soils 33: 410415.
  • Germida JJ, Siciliano SD, Renato de Freitas J & Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microb Ecol 26: 4350.
  • Girvan MS, Bullimore J, Pretty JN, Osborn AM & Ball AS (2003) Soil type is the primary determinant of the composition of total and active bacterial communities in arable soils. Appl Environ Microbiol 69: 18001809.
  • Götz M, Nirenberg H, Krause S, Wolters H, Draeger S, Buchner A, Lottmann J, Berg G & Smalla K (2006) Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol Ecol 58: 404413.
  • Graner G, Persson P, Meijer J & Alstrom S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 29: 269276.
  • Grayston SJ, Wang S, Campbell CD & Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30: 369378.
  • Haas D & Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3: 307319.
  • Haichar FE, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T & Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2: 12211230.
  • Heuer H, Kroppenstadt R, Lottmann J, Berg G & Smalla K (2002) No detectable effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere consortia in a 3-year field experiment, but variability due to natural factors. Appl Environ Microbiol 68: 13251335.
  • Ikemoto S, Suzuki K, Kaneko T & Komagata K (1980) Characterization of strains of Pseudomonas maltophilia which do not require methionine. Int J Syst Bacteriol 30: 437447.
  • Jones KM, Kobayashi H, Davies BW, Taga ME & Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol 5: 619633.
  • Jousset A, Lara E, Wall LG & Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72: 70837090.
  • Kowalchuk GA, Buma DS, De Boer W, Klinkhammer PGL & Van Veen H (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. A van Leeuw J Microb 81: 509520.
  • Kremer RJ, Begonia MFT, Stanlay L & Lanham ET (1990) Characterization of rhizobacteria associated with weed seedlings. Appl Environ Microbiol 56: 16491655.
  • Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM & Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68: 18541863.
  • Latour X, Corberand T, Laguerre G, Allard F & Lemanceau P (1996) The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62: 24492456.
  • Latour X, Philippot L, Corberand T & Lemanceau P (1999) The establishment of an introduced community of fluorescent pseudomonads in the soil and in the rhizosphere is affected by the soil type. FEMS Microbiol Ecol 30: 163170.
  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras JM & Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61: 10041012.
  • Leveau JHJ (2007) The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. Eur J Plant Pathol 119: 279300.
  • Long SR (2001) Genes and signals in rhizobium–legume symbiosis. Plant Physiol 125: 6972.
  • Lottmann J, Heuer H, Smalla K & Berg G (1999) Influence of transgenic T4-lysozyme-producing plants on beneficial plant-associated bacteria. FEMS Microb Ecol 29: 365377.
  • Lottmann J, Heuer H, Smalla K & Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microb Ecol 33: 4149.
  • Lugtenberg BJJ & Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1: 913.
  • Lugtenberg BJJ, Chin-A-Woeng TFC & Bloemberg GV (2002) Microbe–plant interactions: principles and mechanisms. Antonie van Leewenhoek 81: 373383.
  • Maloney PE, Van Bruggen AHC & Hu S (1997) Bacterial community structure in relation to the carbon environments in lettuce and tomato rhizospheres and in bulk soil. Microb Ecol 34: 109117.
  • Mansouri H, Petit A, Oger P & Dessaux Y (2002) Engineered rhizosphere: the trophic bias generated opine-producing plants is independent of the opine, the soil origin, and the plant species. Appl Environ Microbiol 68: 25622566.
  • Mark GL, Dow JM, Kiely PD et al. (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe–plant interactions. P Natl Acad Sci USA 102: 1745417459.
  • Marschner P, Yang CH, Lieberei R & Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33: 14371445.
  • Martinez-Granero F, Rivilla R & Martin M (2006) Rhizosphere selection of highly motile phenotypic Pseudomonas fluorescens with enhanced colonization ability. Appl Environ Microbiol 72: 34293434.
  • Matilla MA, Espinosa-Urgel M, Rodriguez-Herva JJ, Ramos JL & Ramos-Gonzalez MI (2008) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8: R179. Epub ahead of print.
  • Miller LD, Yost CK, Hynes MF & Alexandre G (2007) The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Mol Microbiol 63: 348362.
  • Milling A, Smalla K, Xaver F, Maidl K, Schloter M & Munch JC (2004) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266: 2339.
  • Morris PF, Bone E & Tyler BM (1998) Chemotrophic and contact response of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117: 11711178.
  • Nichols D (2007) Cultivation gives context to the microbial ecologist. FEMS Microbiol Ecol 60: 351357.
  • Nilsson M, Rasmussen U & Bergman B (2006) Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol Ecol 55: 382390.
  • Nunan N, Daniell TJ, Singh BK, Papert A, Mc Nicol JW & Prosser JI (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol 71: 67846792.
  • Oliver KL, Hamelin RC & Hintz WE (2008) Effects of transgenic hybrid aspen over-expressing P 1 olyphenol oxidase on rhizosphere diversity. Appl Environ Microb 74: 53405348.
  • Peterson SB, Dunn AK, Klimowicz AK & Handelsman J (2006) Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga–Flavobacterium group. Appl Environ Microbiol 72: 54215427.
  • Picard C & Bosco M (2008) Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots. Naturwissenschaften 95: 116.
  • Pitman NCA & Jörgensen PM (2002) Estimating the size of the threatened world flora. Science 298: 989.
  • Raaijmakers JM, Paulitz CT, Steinberg C, Alabouvette C & Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil DOI: DOI: 10.1007/s11104-008-9568-6.
  • Rasche F, Hodl V, Poll C, Kandeler E, Gerzabek MH, Van Elsas JD & Sessitsch A (2006a) Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiol Ecol 56: 219235.
  • Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD & Sessitsch A (2006b) Impact of transgenic potatoes expressing antibacterial agents on bacterial endophytes is comparable to effects of soil, wildtype potatoes, vegetation stage and pathogen exposure. Can J Microbiol 43: 555566.
  • Rediers H, Rainey PB, Vanderleyden J & De Mot R (2005) Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Rev 69: 217261.
  • Rettenmaier H & Lingens F (1985) Purification and some properties of two isofunctional juglone hydroxylases from Pseudomonas putida J1. Biol Chem 366: 637646.
  • Ritz K (2007) The plate debate: cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol 60: 358362.
  • Robin A, Mougel C, Siblot S, Vansuyt G, Mazurier S & Lemanceau P (2006) Effect of ferritin overexpression in tobacco on the structure of bacterial and pseudomonad communities associated with the roots. FEMS Microbiol Ecol 58: 492502.
  • Robin A, Mazurier S, Mougel C, Vansuyt G, Corberand T, Meyer JM & Lemanceau P (2007) Diversity of root-associated fluorescent pseudomonads as affected by ferritin overexpression in tobacco. Environ Microbiol 9: 17241737.
  • Rodriguez-Carres M, White G, Tsuchiya D, Taga M & Van Etten HD (2008) The supernumerary chromosome of Nectria haematococca that carries pea-pathogenicity-related genes also carries a trait for pea rhizosphere competitiveness. Appl Environ Microbiol 74: 38493856.
  • Rodríguez-Navarro DN, Dardanelli MS & Ruíz-Saínz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272: 127136.
  • Rovira AD (2005) Plant root excretions in relation to the rhizosphere effect. Plant Soil 7: 178194.
  • Salles JF, Van Veen JA & Van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol 70: 40124020.
  • Sanguin H, Remenant B, Dechesne A, Thioulouse J, Vogel TM, Nesme X, Moënne-Loccoz Y & Grundmann GL (2006) Potential of a 16S rRNA-based taxonomic microarray for analyzing the rhizosphere effects of maize on Agrobacterium spp. and bacterial communities. Appl Environ Microbiol 72: 43024312.
  • Scherwinski K, Grosch R & Berg G (2008) Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effect on non-target microbes. FEMS Microb Ecol 64: 106116.
  • Shaw LJ, Morris P & Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8: 18671880.
  • Siciliano DS, Forin N, Mihoc A et al. (2001) Selection of specific endophytic bacterial genotypes by plant in response to soil contamination. Appl Environ Microbiol 67: 24692475.
  • Simon HM, Jahn CE, Bergerud LT, Sliwinski MK & Weimer PJ (2005) Cultivation of mesophilic soil Crenarchaeotes in enrichment cultures from plant roots. Appl Environ Microbiol 71: 47514760.
  • Singh BK, Milard P, Whitely AS & Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12: 386393.
  • Sliwinski MK & Goodman RM (2004) Comparison of crenarchaeal consortia inhabiting the rhizosphere of diverse terrestrial plants with those in bulk soil in native environments. Appl Environ Microbiol 70: 18211826.
  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Roskot N, Heuer H & Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by Denaturing Gradient Gel Electrophoresis: plant dependent enrichment and seasonal shifts. Appl Environ Microbiol 67: 47424751.
  • Smith KP, Handelsman J & Godman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. P Natl Acad Sci USA 9: 47864790.
  • Somers E, Vanderleyden J & Srinivisam M (2004) Rhizosphere bacterial signaling: a love parade beneath our feet. Crit Rev Microbiol 30: 205240.
  • Sørensen J (1997) The rhizosphere as a habitat for soil microorganisms. Modern Soil Microbiology (Van ElsasJD, TrevorsJT & WellingtonEMH, eds), pp. 2145. Marcel Dekker Inc., New York.
  • Soto MJ, Sanjuan J & Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152: 31673174.
  • Tarlera S, Jangid K, Ivester AH, Whitman WB & Williams MA (2008) Microbial community succession and bacterial diversity in soils during 77 000 years of ecosystem development. FEMS Microbiol Ecol 64: 129140.
  • Tjamos EC, Rowe RC, Heale JB & Fravel DR (2000) Advances in Verticillium Research and Disease Management. The American Phytopathological Society (APS) Press, St Paul, MN, 357pp.
  • Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varanini Z, Nannipieri P, Torrent J, Martinoia E & Cesco S (2008) Flavonoids of white lupin participate in phosphorous mobilization in soil. Soil Biol Biochem 40: 19711974.
  • Tucker SL & Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39: 385417.
  • Uren NC (2000) Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants. The Rhizosphere: Biochemistry, and Organic Substances at the Soil Interface (PintonR, VaraniZ & NanniperiP, eds), pp. 1940. Marcel Dekker Inc., New York.
  • Van der Putten WH, Klironomos JN & Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1: 2837.
  • Van West P, Morris BM, Reid B, Appiah AA & Osborne MC (2002) Oomycete plant pathogens use electric fields to target roots. Mol Plant Microbe Interact 15: 790798.
  • Velicer GJ, Raddatz G, Keller H, Deiss S, Lanz C, Dinkelacker I & Schuster SC (2006) Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. P Natl Acad Sci USA 103: 81078112.
  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann Rev Phytopathol 26: 379407.
  • Weller DM, Raaijmakers JM, Gardener BB & Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40: 309348.
  • Wieland G, Neumann R & Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67: 58495854.
  • Yao J & Allen C (2007) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 188: 36973708.
  • Yuan Z, Liu P, Saenkham P, Kerr K & Nester EW (2008) Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium–plant interactions. J Bacteriol 190: 494507.
  • Zachow C, Berg C, Müller H, Meincke R, Komon-Zelazowska M, Druzhinina IS, Kubicek C & Berg G (2008a) Fungal biodiversity in the soils/rhizospheres of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J 3: 7992.
  • Zachow C, Tilcher R & Berg G (2008b) Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microb Ecol 55: 119129.