SEARCH

SEARCH BY CITATION

References

  • Ameryk A, Podgórska B & Witek Z (2005) The dependence between bacterial production and environmental conditions in the Gulf of Gdansk. Oceanologia 47: 2745.
  • Azam F, Barber RT, Ducklow HW, Marra J & Smith D (2003) Arabian Sea bacterial and primary production data. United States JGOFS Process Study Data 1989–1998. CD-ROM volume 1, version 1, Woods Hole Oceanographic Institution, USA, U.S. JGOFS Data Management Office, April 2003.
  • Barber RT, Ducklow HW & Kirchman DL (2003a) Equatorial Pacific bacterial and primary production data. United States JGOFS Process Study Data 1989–1998. CD-ROM volume 1, version 1, Woods Hole Oceanographic Institution, USA, U.S. JGOFS Data Management Office, April 2003.
  • Barber RT, Ducklow HW, Marra J & Smith W (2003b) Ross Sea bacterial and primary production data. United States JGOFS Process Study Data 1989–1998. CD-ROM volume 1, version 1, Woods Hole Oceanographic Institution, USA, U.S. JGOFS Data Management Office, April 2003.
  • Bell RT, Ahlgren GM & Ahlgren I (1983) Estimating bacterioplankton production by measuring [3H]thymidine incorporation in a eutrophic Swedish lake. Appl Environ Microb 45: 17091721.
  • Billen G & Fontigny A (1987) Dynamics of Phaeocyctis-dominated spring bloom in Belgian coast waters. II. Bacterioplankton dynamics. Mar Ecol Prog Ser 37: 249257.
  • Brock TD & Clyne J (1984) Significance of algal excretory products for growth of epilimnetic bacteria. Appl Environ Microb 47: 731734.
  • Carillo P, Medina-Sanchez JM & Villar-Argaiz M (2002) The interaction of phytoplankton and bacteria in a high mountain lake: importance of the spectral composition of solar radiation. Limnol Oceanogr 47: 12941306.
  • Carlson CA (2002) Production and removal processes. Biogeochemistry of Marine Dissolved Organic Matter (HansellDA & CarlsonCA, eds), pp. 91151. Academic Press, San Diego, CA.
  • Cherrier J, Bauer JE, Druffel ERM, Coffin RB & Chanton JP (1999) Radiocarbon in marine bacteria: evidence fort the ages of assimilated carbon. Limnol Oceanogr 44: 730736.
  • Chin-Leo G & Kirchman DL (1988) Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine. Appl Environ Microb 54: 19341939.
  • Cho CB, Park MG, Shim JH & Choi DH (2001) Sea-surface temperature and f-ratio explain large variability in the ratio of bacterial production to primary production in the Yellow Sea. Mar Ecol Prog Ser 216: 3141.
  • Chróst RJ & Siuda W (2006) Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient. Limnol Oceanogr 51: 749762.
  • Chrzanowski TH & Hubbard JG (1988) Primary and bacterial secondary production in a southwestern reservoir. Appl Environ Microb 54: 661669.
  • Church MJ (2008) Resource control of bacterial dynamics in the sea. Microbial Ecology of the Oceans (KirchmanDL, ed), pp. 335382. John Wiley & Sons Inc., New York.
  • Church MJ, Hutchins DA & Ducklow HW (2000) Limitation of bacterial growth by dissolved organic matter and iron in the Southern Ocean. Appl Environ Microb 66: 455466.
  • Cochlan WP (2001) The heterotrophic bacterial response during a mesoscale iron enrichment experiment (IronEx II) in the eastern equatorial Pacific Ocean. Limnol Oceanogr 46: 428435.
  • Cole JJ, Likens GE & Strayer DL (1982) Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol Oceanogr 27: 10801090.
  • Cole JJ, Findlay S & Pace ML (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43: 110.
  • Coveney MF (1982) Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos 38: 820.
  • Coveney MF & Wetzel RG (1995) Biomass, production, and specific growth rate of bacterioplankton and coupling to phytoplankton in an oligotrophic lake. Limnol Oceanogr 40: 11871200.
  • Del Giorgio PA, Cole JJ & Cimbleris A (1997) Respiration rates in bacteria exceed plankton production in unproductive aquatic systemes. Nature 385: 148151.
  • Ducklow HW (1999) The bacterial component of the oceanic euphotic zone. FEMS Microbiol Ecol 30: 110.
  • Ducklow HW & Carlson CA (1992) Oceanic bacteria production. Adv Microb Ecol 12: 113181.
  • Ducklow HW & Kirchman DL (1983) Bacterial dynamics and distribution during a spring bloom in the Hudson River Plume. J Plankton Res 5: 333355.
  • Ducklow HW, Kirchman DL & Anderson TR (2002) The magnitude of the spring bacterial bloom in the North Atlantic Ocean. Limnol Oceanogr 47: 16841693.
  • Gasol JM & Duarte CM (2000) Comparative analyses in aquatic microbial ecology: how far do they go? FEMS Microbiol Ecol 31: 99106.
  • Gasol JM, Del Giorgio AP & Duarte CM (1997) Biomass distribution in marine communities. Limnol Oceanogr 42: 13531363.
  • Hill V, Cota G & Kirchman DL (2002) Western Arctic study. Available at http://wwweol.ucar.edu/projects/sbi/
  • Hill V, Cota G & Kirchman DL (2004) Western Arctic study. Available at http://wwweol.ucar.edu/projects/sbi/
  • Hoch MP & Kirchman DL (1993) Seasonal and inter-annual variability in the bacterial production and biomass in a temperate estuary. Mar Ecol Prog Ser 98: 283295.
  • Hoppe H-G, Gocke K, Koppe R & Begler C (2002) Bacterial growth and primary production long a north–south transect of the Atlantic Ocean. Nature 416: 168171.
  • Iriarte A, Madariaga I, Revilla M & Sarobe A (2003) Short-term variability in microbial food web dynamics in a shallow tidal estuary. Aquat Microb Ecol 31: 145161.
  • Jugnia L-B, Richardot M, Debroas D & Dévaux J (2006) Bacterial production in the recently flooded Sep Reservoir: diel changes in relation to dissolved carbohydrates and combines amino acids. Hydrobiologia 563: 421430.
  • Kamjunke N, Tittel J, Krumbeck H, Beulker C & Poerschmann J (2005) High heterotrophic bacterial production in acidic, iron-rich mining lakes. Microb Ecol 49: 425433.
  • Kirchman DL (1997) Microbial breathing lessons. Nature 385: 121122.
  • Kirchman DL, Morán XA & Ducklow H (2009) Microbial growth in the polar oceans – role of temperature and potential impact of climate change. Nat Rev Microbiol 7: 451459.
  • Kopácek J, Brzakova M, Hejzlar J, Nedoma J, Porcal P & Vrba J (2004) Nutrient cycling in a strongly acidified mesotrophic lake. Limnol Oceanogr 49: 12021213.
  • Krstulović N, Pucher-Petković T & Šolić M (1995) The relation between bacterioplankton and phytoplankton production in the mid Adriatic Sea. Aquat Microb Ecol 9: 4145.
  • Laanbroek HJ, Verplanke JC, De Visscher PRM & De Vuyt R (1985) Distribution of phyto- and bacterioplankton growth and biomass parameters dissolved inorganic nutrients and free amino acids during a spring bloom in the Ooterschelde basin, The Netherlands. Mar Ecol Prog Ser 25: 111.
  • Lamy D, Artigas LF, Jauzein C, Lizon F & Cornille V (2006) Coastal bacteria viability and production in the eastern English Channel: a case study during a Phaeocystis globosa bloom. J Sea Res 56: 227238.
  • Lancelot C (1979) Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the southern North Sea, as determined by short-term kinetics. Mar Ecol Prog Ser 1: 179186.
  • Lancelot C & Billen G (1984) Activity of heterotrophic bacteria and its coupling to primary production during the spring bloom in the southern bight of the North Sea. Limnol Oceanogr 29: 721730.
  • Larsson U & Hagstrom A (1982) Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient. Mar Biol 67: 5770.
  • Legendre L & Rassoulzadegan F (1995) Plankton and nutrient dynamics in marine waters. Ophelia 41: 153172.
  • Legendre L, Demers D, Ingram G, Mucci A, Packard T, Roy S, Therriault J-C, Vézina A & Klein B (2003) CTD and Bottle JGOFS Core Data from the Gulf of St. Lawrence. JGOFS Canada Data Sets 1989–1998, CD-ROM Version 1.0 December 2000.
  • Li WKW, Head EJH & Harrison WG (2004) Macroecological limits of heterotrophic bacterial abundance in the ocean. Deep-Sea Res 51: 15291540.
  • Lovell CR & Konopka A (1985) Primary and bacterial production in two dimictic Indiana Lakes. Appl Environ Microb 49: 485491.
  • Marty J-C & Van Wambeke F (2003) Primary and bacterial production during DYNAPROC 1995. France-JGOFS/PROOF DataManagement Office, May 2003, Observatoire Océanologique de Villefranche-sur-Mer (OOV), France.
  • McManus GB & Peterson WT (1988) Bacterioplankton production in the nearshore zone during upwelling off central Chile. Mar Ecol Prog Ser 43: 1117.
  • Møller-Jensen L (1983) Phytoplankton release of extracellular organic carbon, molecular weight composition and bacterial assimilation. Mar Ecol Prog Ser 11: 3948.
  • Morán XAG & Estrada M (2002) Phytoplanktonic DOC and POC production in the Bransfield and Gerlache Straits as derived from kinetic experiments of 14C incorporation. Deep Sea Res II 49: 769786.
  • Morán XAG, Gasol JM, Pedrós-Alió C & Estrada M (2001) Dissolved and particulate primary production and bacterial production in offshore Antarctic waters during austral summer: coupled ou uncoupled? Mar Ecol Prog Ser 222: 2539.
  • Morán XAG, Estrada M, Gasol JM & Pedrós-Alió C (2002) Dissolved primary production and the strength of phytoplankton–bacterioplankton coupling in contrasting marine regions. Microb Ecol 44: 217223.
  • Moutin T & Van Wambeke F (2003) Primary and bacterial production during PROSOPE 1999. France-JGOFS/PROOF DataManagement Office, May 2003, Observatoire Océanologique de Villefranche-sur-Mer (OOV), France.
  • Moutin T, Raimbault P & Poggiale J-C (1999) Primary production in surface waters of the western Mediterranean Sea. Calculation of daily production. CR Acad Sci Paris Life Sci 322: 651659.
  • Nagata T (2000) Production mechanisms of dissolved organic matter. Microbial ecology of the Oceans (KirchmanDL, ed), pp. 121152. Wiley-Liss, USA.
  • Oliver JL, Barber RT, Smith WO & Ducklow HW (2004) The heterotrophic bacterial response during the Southern Ocean Iron Experiment (SOFeX). Limnol Oceanogr 49: 2192140.
  • Pedrós-Alió C & Varela M (2003) Bacterial and primary production during FRUELA study. Spanish National Plan for Antarctic Research of the Comisíon Interministerial de Ciencia y Tecnología (CICYT), Project ANT94-1010.
  • Pérez M-T, Hörtnagl P & Sommaruga R (2009) Contrasting ability to take up leucine and thymidine among freshwater bacterial groups: implications for bacterial production measurements. Environ Microb 12: 7482.
  • Poremba K, Tillman U & Hesse K-J (1999) Tidal impact on planktonic primary and bacterial production in the German Wadden Sea. Helgoland Mar Res 53: 1927.
  • Renaud F, Pringault O & Rochelle-Newall E (2005) Effects of the colonial cyanobacterium Trichodesmium spp. on bacterial activity. Aquat Microb Ecol 41: 261270.
  • Riemann B (1983) Biomass and production of phyto- and bacterioplankton in eutrophic Lake Tystrup, Denmark. Freshwat Biol 13: 389398.
  • Riemann B, Sondergaard M, Schierup H-H, Bossel-Mann S, Christiensen G, Hansen J & Nielsen B (1982) Carbon metabolism during a Spring diatom bloom in the eutrophic Lake Mosso. Int Rev Ges Hydrobio 67: 145185.
  • Riemann B, Bell RT & Jørgensen NOG (1990) Incorporation of thymidine, adenine and leucine into natural bacterial assemblages. Mar Ecol Prog Ser 65: 8794.
  • Robinson C (2008) Heterotrophic bacterial respiration. Microbial Ecology of the Oceans, 2nd edn (KirchmanDL, ed), pp. 299334. John Wiley & Sons Inc, New York.
  • Rochelle-Newall EJ, Torréton J-P, Mari X & Pringault O (2008) Phytoplankton-bacterioplankton coupling in a subtropical South Pacific coral reef lagoon. Aquat Microb Ecol 50: 221229.
  • Rosenstock B & Simon M (2001) Sources and sinks of dissolved free amino acids and protein in a large and deep mesotrophic lake. Limnol Oceanogr 46: 644654.
  • Simon M & Tilzer MM (1987) Bacterial response to seasonal changes in primary production and phytoplankton biomass in Lake Constance. J Plankton Res 9: 535552.
  • Teira E, Pazo MJ, Quevedo M, Fuentes MV, Niell FX & Fernandez E (2003) Rates of dissolved organic carbon production and bacterial activity in the eastern North Atlantic Subtropical Gyre during summer. Mar Ecol Prog Ser 249: 5367.
  • Turley CM, Bianchi M, Christaki U, Conan P, Harris JRW, Psarra S, Ruddy G, Stutt E, Tselepides A & Van Wambeke F (2000) Relationship between primary producers and bacteria in an oligotrophic sea the Mediterranean and biogeochemical implications. Mar Ecol Prog Ser 193: 1118.
  • Vadstein O, Harkjeer BO, Jensen A, Olsen Y & Reinertsen H (1989) Cycling of organic carbon in the photic zone of a eutrophic lake with special reference to the heterotrophic bacteria. Limnol Oceanogr 34: 840855.
  • Van Wambeke F, Bonnet S, Moutin T, Raimbault P, Alarçon G & Guieu C (2007) Factors limiting heterotrophic bacterial production in the southern Pacific Ocean. Biogeosci Discuss 4: 37993828.
  • Williams PJleB (1981) Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch Sonderh 5: 128.
  • Wolter K (1982) Bacterial incorporation of organic substances released by natural phytoplankton populations. Mar Ecol Prog Ser 7: 287295.
  • Zohary T, Herut B, Krom MD et al. (2005) P-limited bacteria but N and P co-limited phytoplankton in the Eastern Mediterranean – a microcosm experiment. Deep-Sea Res 52: 30113023.