SEARCH

SEARCH BY CITATION

References

  • Alberton O, Kuyper TW & Gorissen A (2005) Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytol 167: 859868.
  • Alberton O, Kuyper TW & Summerbell RC (2010) Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant Soil 328: 459470.
  • Al-Karaki G, McMichael B & Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14: 263269.
  • Al-Karaki GN & Al-Raddad A (1997) Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7: 8388.
  • Al-Karaki GN & Clark RB (1998) Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21: 263276.
  • Applebee TA, Gibson DJ & Newman JA (1999) Elevated atmospheric carbon dioxide alters the effects of allelochemicals production by tall fescue on alfalfa seedlings. Trans Ill State Acad Sci 92: 2331.
  • Arachevaleta M, Hoveland CS, Bacon CW & Radcliffe DE (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81: 8390.
  • Aroca R & Ruiz-Lozano JM (2009) Induction of plant tolerance to semi-arid environments by beneficial soil microorganisms – a review. Climate Change, Intercropping, Pest Control and Beneficial Microorganisms, Sustainable Agriculture Reviews, Vol. 2 (LichtfouseE, ed), pp. 121135. Springer, the Netherlands.
  • Arshad M, Shaharoona B & Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18: 611620.
  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 342.
  • Bacon CW & De Battista J (1991) Endophytic fungi of grasses. Handbook of Applied Mycology Vol. 1. Soil and Plants (AroraDK, RaiB, MukerjiKG & KnudsenGR, eds), pp. 231256. Marcel Dekker, New York.
  • Baon JB, Smith SE & Alston AM (1994) Phosphorus uptake and growth of barley as affected by soil temperature and mycorrhizal infection. J Plant Nutr 17: 479492.
  • Bashan Y & Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30: 12251228.
  • Bensalim S, Nowak J & Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75: 145152.
  • Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). Multigenic and Induced Systemic Resistance in Plants (TuzunS & BentE, eds), pp. 225258. Springer, Berlin.
  • Bilal R, Rasul G, Arshad M & Malik KA (1993) Attachment, colonization and proliferation of Azospirillum brasiliense and Enterobacter spp. on root surface of grasses. World J Microb Biot 9: 6369.
  • Bogeat-Triboulot MB, Bartoli F, Garbaye J, Marmeisse R & Tagu D (2004) Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. Plant Soil 267: 213223.
  • Brosi GB, Nelson JA, McCulley RL, Classen AT & Norby R (2009) PS 45–40: Global change factors interact with fungal endophyte symbiosis to determine tall fescue litter chemistry. The 94th ESA Annual Meeting, PS 45–40.
  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320: 3777.
  • Buscot F, Munch JC, Charcosset JY, Gardes M, Nehls U & Hampp R (2000) Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiol Rev 24: 601614.
  • Carroll G (1988) Fungal endophytes in stems and leaves – from latent pathogen to mutualistic symbiont. Ecology 69: 29.
  • Chen X, Tu C, Burton MG, Watson DM, Burkey KO & Hu S (2007) Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae. Glob Change Biol 13: 12381249.
  • Cheplick GP, Perera A & Koulouris K (2000) Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Funct Ecol 14: 657667.
  • Clay K & Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285: 17421744.
  • Clemmensen KE, Michelsen A, Jonasson S & Shaver GR (2006) Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol 171: 391404.
  • Compant S, Duffy B, Nowak J, Clément C & Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microb 71: 49514959.
  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C & Ait Barka E (2005b) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microb 71: 16851693.
  • Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E & Clément C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63: 8493.
  • Compant S, Clément C & Sessitsch A (2010) Colonization of plant growth-promoting bacteria in the rhizo- and endosphere of plants: importance, mechanisms involved and future prospects. Soil Biol Biochem 42: 669678.
  • Conn KL, Nowak J & Lazarovitz G (1997) A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Can J Microbiol 43: 801808.
  • Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault MP, Uroz S & Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42: 679698.
  • Creus CM, Sueldo RJ & Barassi CA (1998) Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Can J Botany 76: 238244.
  • Creus CM, Sueldo RJ & Barassi CA (2004) Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Can J Botany 82: 273281.
  • Cudlin P, Kieliszewska-Rokicka B, Rudawska M et al. (2007) Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biology 141: 406425.
  • Das A & Varma A (2009) Symbiosis: the art of living. Symbiotic Fungi Principles and Practice (VarmaA & KharkwalAC, eds), pp. 128. Springer, Berlin.
  • Davies FT Jr, Svenson SE, Cole JC, Phavaphutanon L, Duray SA, Olalde-Portugal V, Meier CE & Bo SH (1996) Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought. Tree Physiol 16: 985993.
  • Davies FT Jr, Olalde-Portugal V, Aguilera-Gómez L, Alvarado MJ, Ferrera- Cerrato RC & Boutton TW (2002) Alleviation of drought stress of chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico. Sci Hortic 92: 347359.
  • De Bary AH (1879) De la symbiose. Rev Int Sci 3: 301309.
  • Del Mar Alguacil M, Köhler J, Caravaca J & Roldán A (2009) Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and auaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microb Ecol 58: 942951.
  • Denton BD (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. Microbiol Mol Genet 3: 15.
  • Dickie IA, Koide RT & Steiner KC (2002) Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol Monogr 72: 505521.
  • Di Pietro M, Churin JL & Garbaye J (2007) Differential ability of ectomycorrhizas to survive drying. Mycorrhiza 17: 547550.
  • Dixon RK & Hiol-Hiol F (1992) Gas exchange and photosynthesis of Eucalyptus camaldulensis seedlings inoculated with different ectomycorrhizal symbionts. Plant Soil 147: 143149.
  • Drigo B, Kowalchuk GA & Van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fert Soils 44: 667679.
  • Drigo B, Van Veen JA & Kowalchuk GA (2009) Specific rhizosphere bacterial and fungal groups respond to elevated atmospheric CO2. ISME J 3: 12041217.
  • Egamberdiyeva D & Höflich G (2002) Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. at different temperatures. J Plant Growth Regul 38: 219224.
  • Egamberdiyeva D & Höflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35: 973978.
  • Egerton-Warburton LM, Querejeta JI & Allen MF (2008) Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during exposed drought. Plant Signal Behav 3: 6871.
  • Elbersen HW & West CP (1996) Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass Forage Sci 51: 333342.
  • Elmi AA & West CP (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol 131: 6167.
  • Feil W, Kottke I & Oberwinkler F (1988) The effect of drought on mycorrhizal production and very fine root system development of Norway spruce under natural and experimental conditions. Plant Soil 108: 221231.
  • Figueiredo MVB, Burity HA, Martínez CR & Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40: 182188.
  • Fitter AH (2001) Specificity, links and networks in the control of diversity in plant and microbial communities. Ecology: Achievement and Challenge (HuntleyNJ & LevinS, eds), pp. 95114. Blackwell Science, Oxford, UK.
  • Fitter AH & Moyersoen B (1996) Evolutionary trends in root–microbe symbioses. P T Roy Soc Lond B 351: 13671375.
  • Fitter AH, Heinemeyer A & Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147: 179187.
  • Forchetti G, Masciarelli O, Alemano S, Alvarez D & Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biot 76: 11451152.
  • Fransson PMA, Taylor AFS & Finlay RD (2001) Elevated atmospheric CO2 alters root symbionts community structure in forest trees. New Phytol 152: 431442.
  • Fransson PMA, Taylor AFS & Finlay RD (2005) Mycelial production, spread and root colonisation by ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2. Mycorrhiza 15: 2531.
  • Fujimura KE, Egger KN & Henry GHR (2008) The effect of experimental warming on the root-associated fungal community of Salix arctica. ISME J 2: 105114.
  • Furlan V & Fortin J-A (1973) Formation of endomycorrhizae by Endogone calospora on Allium cepa under three temperature regimes. Nat Can 100: 467477.
  • Garcia MO, Ovasapyan T, Greas M & Treseder KK (2008) Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant Soil 303: 301310.
  • Gavito ME, Curtis PS, Mikkelsen TN & Jakobsen I (2000) Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. J Exp Bot 51: 19311938.
  • Glenn AE, Bacon CW, Price R & Hanlin RT (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88: 369383.
  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251: 17.
  • Godbold DL & Berntson GM (1997) Elevated atmospheric CO2 concentration changes ectomycorrhizal morphotype assemblages in Betula papyrifera. Tree Physiol 17: 347350.
  • Godbold DL, Berntson GM & Bazzaz FA (1997) Growth and mycorrhizal colonization of three North-American tree species under elevated atmospheric CO2. New Phytol 137: 433440.
  • Gorissen A & Kuyper ThW (2000) Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated [CO2]. New Phytol 146: 163168.
  • Graham JH, Leonard RT & Menge JA (1982) Interaction of light and soil temperature with phosphorus inhibition of vesicular–arbuscular mycorrhiza formation. New Phytol 91: 683690.
  • Grüter D, Schmid B & Brandl H (2006) Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. BMC Microbiol 6: 6874.
  • Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V & Kandeler E (2007) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39: 22082221.
  • Haase S, Philippot L, Neumann G, Marhan S & Kandeler E (2008) Local response of bacterial densities and enzyme activities to elevated atmospheric CO2 and different N supply in the rhizosphere of Phaseolus vulgaris L. Soil Biol Biochem 40: 12251234.
  • Hallmann J (2001) Plant interactions with endophytic bacteria. Biotic Interactions in Plant–Pathogen Associations (JegerMJ & SpenceNJ, eds), pp. 87119. CABI Publishing, Wallingford, UK.
  • Hallmann J & Berg B (2007) Spectrum and population dynamics of bacterial root endophytes. Microbial Root Endophytes (SchulzBJE, BoyleCJC & SieberTN, eds), pp. 1531. Springer, Berlin.
  • Harris D & Paul EA (1987) Carbon requirements of vesicular–arbuscular mycorrhizae. Ecophysiology of VA Mycorrhizal Plants (SafirGR, ed), pp. 93103. CRC Press, Boca Raton, FL.
  • Hasegawa S, Meguro A, Nishimura T & Kunoh H (2004) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete. I. Enhancement of osmotic pressure in leaf cells. Actinomycetologica 18: 4347.
  • Hasegawa S, Meguro A, Toyoda K, Nishimura T & Kunoh H (2005) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete. II. Acceleration of callose accumulation and lignification. Actinomycetologica 19: 1317.
  • Hawkes CV, Hartley IP, Ineson P & Fitter AH (2008) Soil temperature affects allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Change Biol 14: 11811190.
  • Hebeisen T, Lüscher A & Nösberger J (1997) Effects of elevated atmospheric CO2 and nitrogen fertilisation on yield of Trifolium repens and Lolium perenne. Acta Oecol 18: 277284.
  • Heinemeyer A & Fitter AH (2004) Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. J Exp Bot 55: 525534.
  • Heinemeyer A, Ineson P, Ostle N & Fitter AH (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171: 159170.
  • Hesse U, Hahn H, Andreeva K, Forster K, Warnstorff K, Schoberlein W & Diepenbrock W (2004) Seed physiology, production & technology. Investigations on the influence of Neotyphodium endophytes on plant growth and seed yield of Lolium perenne genotypes. Crop Sci 44: 16891695.
  • Hill NS, Pachon JG & Bacon CW (1996) Acremonium coenophialum-mediated short- and long-term drought acclimation in tall fescue. Crop Sci 36: 665672.
  • Horton TR, Bruns TD & Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Botany 77: 93102.
  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ & Xiaosu D (2001) Climate change 2001: the scientific basis (HoughtonJT, DingY, GriggsDJ, NoguerM, Van Der LinderPJ, DaiX, MaskellK & JohnsonCA, eds), pp. 183. Cambridge University Press, Cambridge, UK.
  • Hunt MG, Rasmussen S, Newton PCD, Parsons AJ & Newman JA (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte infection on perennial ryegrass: growth, chemical composition and alkaloid production. Plant Cell Environ 28: 13451354.
  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW & Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni-hyperaccumulator Thlaspi goesingense. Appl Environ Microb 70: 26672677.
  • Ineichen K, Wiemken V & Wiemken A (1995) Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant Cell Environ 18: 703707.
  • IPCC Climate Change (2007) Synthesis report. Summary for policymakers. Available at http://www.ipcc.ch (accessed November 2007).
  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R & Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water-deficit stress. Colloid Surface B 60: 711.
  • Jany JL, Martin F & Garbaye J (2003) Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp. in relation to soil water potential in five beech forests. Plant Soil 255: 487494.
  • Javed M & Arshad M (1997) Growth promotion of two wheat cultivars by plant growth promoting rhizobacteria. Pakistan J Bot 29: 243248.
  • Jifon JL, Graham JH, Drouillard DL & Syvertsen JP (2002) Growth depression of mycorrhizal Citrus seedlings grown at high phosphorus supply is mitigated by elevated CO2. New Phytol 153: 133142.
  • Jossi M, Fromin N, Tarnawski S, Kohler F, Gillet F, Aragno M & Hamelin J (2006) How elevated pCO2 modifies total and metabolically active bacterial communities in the rhizosphere of two perennial grasses grown under field conditions. FEMS Microbiol Ecol 55: 339350.
  • Ju HJ, Hill NS, Abbott T & Ingram KT (2006) Temperature influences on endophyte growth in tall fescue. Crop Sci 46: 404412.
  • Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S & Tscherko D (2006) Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol Biochem 38: 24482460.
  • Kasai K, Usami T, Lee J, Ishikawa S-I & Oikawa T (2000) Responses of ectomycorrhizal colonization and morphotype assemblage of Quercus myrsinaefolia seedlings to elevated air temperature and elevated atmospheric CO2. Microbes Environ 15: 197207.
  • Kennedy PG & Peay KG (2007) Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant Soil 291: 155165.
  • Klironomos JN, Ursic M, Rillig M & Allen MF (1998) Interspecific differences in the response of arbuscular mycorrhizal fungi to Artemisia tridentata grown under elevated atmospheric CO2. New Phytol 138: 599605.
  • Klironomos JN, Allen MF, Rillig MC, Piotrowski J, Makvandi-Nejad S, Wolfe BE & Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant–soil system. Nature 433: 621624.
  • Kloepper JW & Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Vol. II, Station de Pathologie Végétale et Phyto-Bactériologie ed), pp. 879882. Gilbert-Clarey, Tours, France.
  • Kohler J, Hernández JA, Caravaca F & Roldán A (2008) PGPR and AM fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35: 141151.
  • Kohler J, Caravaca F, Del Mar Alguacil M & Roldán A (2009) Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant-growth-promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biol Biochem 41: 17101716.
  • Koide R (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117: 365386.
  • Körner C (2003) Carbon limitation in trees. J Ecol 91: 417.
  • Kytöviita M-M, Pelloux J, Fontaine V, Botton B & Dizen-Gremel P (1999) Elevated CO2 does not ameliorate effects of ozone on carbon allocation in Pinus halepensis and Betula pendula in symbiosis with Paxillus involutus. Physiol Plantarum 106: 370377.
  • Landa BB, Navas-Cortés JA & Jiménez-Díaz RM (2004) Influence of temperature on plant–rhizobacteria interactions related to biocontrol potential for suppression of fusarium wilt of chickpea. Plant Pathol 53: 341352.
  • Lansac AR & Martin A (1995) Mycorrhizal colonization and drought interactions of Mediterranean shrubs under greenhouse conditions. Arid Soil Res Rehab 9: 167175.
  • Le Houérou HN (1996) Climate change, drought and desertification. J Arid Environ 34: 133185.
  • Lehto T (1992) Mycorrhizas and drought resistance of Picea sitchensis (Bong) Carr. I. In conditions of nutrient deficiency. New Phytol 122: 669673.
  • Lewis JD & Strain BR (1996) The role of mycorrhizas in the response of Pinus taeda seedlings to elevated CO2. New Phytol 133: 431443.
  • Lewis JD, Thomas RB & Strain BR (1994) Effect of elevated CO2 on mycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings. Plant Soil 165: 8188.
  • Liddycoat SM, Greenberg BM & Wolyn DJ (2009) The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions. Can J Microbiol 55: 388394.
  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M & Van Der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21: 583606.
  • Loewe A, Einig W, Shi L, Dizengremel P & Hampp R (2000) Mycorrhization and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol 145: 565574.
  • Lugtenberg B & Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63: 541556.
  • Malcolm GM, López-Guitérrez JC, Koide RT & Eissenstat DM (2008) Respiratory acclimation to temperature by ectomycorrhizal fungi. In: 93rd ESA Annual Meeting, Milwaukee, Wisconsin, USA.
  • Malinowski DP & Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40: 923940.
  • Marilley L, Hartwig UA & Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38: 3949.
  • Markkola AM, Ohtonen A, Ahonen-Jonnarth U & Ohtonen R (1996) Scots pine responses to CO2 enrichment. 1. Ectomycorrhizal fungi and soil fauna. Environ Pollut 94: 309316.
  • Marks S & Clay K (1990) Effects of CO2 enrichment, nutrient addition, and fungal endophyte-infection on the growth of two grasses. Oecologia 84: 207214.
  • Marks S & Lincoln DE (1996) Antiherbivore defence mutualism under elevated carbon dioxide levels: a fungal endophyte and grass. Environ Entomol 25: 618623.
  • Marulanda A, Barea JM & Azcon R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52: 670678.
  • Marulanda A, Barea JM & Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28: 115124.
  • Mayak S, Tirosh T & Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166: 525530.
  • McHugh TA & Gehring CA (2006) Belowground interactions with arbuscular mycorrhizal shrubs decrease the performance of pinyon pine and the abundance of its ectomycorrhizas. New Phytol 171: 171178.
  • Meier S, Grand LF, Schoeneberger MM, Reinert RA & Bruck RI (1990) Growth, ectomycorrhizae and nonstructural carbohydrates of Loblolly Pine seedlings exposed to ozone and soil water deficit. Environ Pollut 64: 1127.
  • Michiels K, Vanderleyden J & Van G (1989) Azospirillum–plant root associations: a review. Biol Fertil Soils 8: 356368.
  • Montealegre CM, Van Kessel C, Blumenthal JM, Hur H-G, Hartwig UA & Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Glob Change Biol 6: 475482.
  • Monz CA, Kunt HW, Reeves FB & Elliot ET (1994) The response of mycorrhizal colonization to elevated CO2 and climate change in Pascopyrum smithii and Bouteloua gracilis. Plant Soil 165: 7580.
  • Morse LJ, Day TA & Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48: 257268.
  • Morte A, Lovisolo C & Schubert A (2000) Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense–Terfezia claveryi. Mycorrhiza 10: 115119.
  • Newman JA, Abner ML, Dado RG, Gibson DJ, Brookings A & Parsons AJ (2003) Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Glob Change Biol 9: 425437.
  • Newsham KK, Fitter AH & Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10: 407411.
  • Nicolson TH (1967) Vesicular–arbuscular mycorrhiza – a universal plant symbiosis. Sci Prog 55: 561581.
  • Nilsen P, Børja I, Knutsen H & Brean R (1998) Nitrogen and drought effects on ectomycorrhizae of Norway spruce [Picea abies L. (Karst.)]. Plant Soil 198: 179184.
  • Norby RJ, O'Neill EG, Hood WG & Luxmore RBJ (1987) Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol 3: 203210.
  • Nowak J, Asiedu SK & Lazarovits G (1995) Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plants co-cultured with a plant growth promoting rhizobacterium. Ecophysiology and Photosynthetic In Vitro Cultures (CarreF & ChagvardieffP, eds), pp. 173180. CEA, Aix-en-Provence.
  • Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3: 223228.
  • Olsrud M, Carlsson BA, Svensson BM, Michelsen A & Melillo JM (2010) Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory. Glob Change Biol 16: 18201829.
  • O'Neill EG, Luxmoore RJ & Norby RJ (1987) Increases in mycorrhizal colonization and seedling growth in Pinus echinata and Quercus alba in an enriched CO2 atmosphere. Can J Forest Res 17: 878883.
  • Osonubi O, Mulongoy K, Awotoye O, Atayese MO & Okali DUU (1991) Effects of ectomycorrhizal and vesicular–arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant Soil 136: 131143.
  • Parke EL, Linderman RG & Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol 95: 8395.
  • Parrent JL, Morris WF & Vigalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87: 22782287.
  • Pigott CD (1982) Survival of mycorrhiza formed by Cenococcum geophilum Fr. in dry soils. New Phytol 92: 513517.
  • Pillay VK & Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43: 354361.
  • Poorter H & Navas M-L (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157: 175198.
  • Querejeta JI, Egerton-Warburton LM & Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 90: 649662.
  • Rangel-Castro JI, Killham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM, Ineson P, Meharg A & Prosser JI (2005) Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol 7: 828838.
  • Rasche F, Hödl V, Poll C, Kandeler E, Gerzabek MH, Van Elsas JD & Sessitsch A (2006a) Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities in comparison to effects of soil, wildtype potatoes, vegetation stage and pathogen exposure. FEMS Microbiol Ecol 56: 219235.
  • Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD & Sessitsch A (2006b) Impact of transgenic potatoes expressing antibacterial agents on bacterial endophytes is comparable to effects of wildtype potatoes and changing environmental conditions. J Appl Ecol 43: 555566.
  • Rasche F, Lueders T, Schaefer S, Buegger F, Gattinger A, Schloter M, Hood-Nowotny RC & Sessitsch A (2009) DNA-stable isotope probing enables the identification of active bacterial endophytes in potato. New Phytol 181: 802807.
  • Rashad MH, Ragab AA & Salem SM (2006) The influence of some Bradyrhizobium and Rhizobium strains as plant growth promoting rhizobacteria on the growth and yield of sorghum (Sorghum bicolor L.) plants under drought stress. Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research. Fourteenth International Plant Nutrition Colloquium, Hannover, Germany (HorstWWJ, SchenkMK, BürkertA et al. eds). Kluwer Academic Publishers, Dordrecht, the Netherlands.
  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S & Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440: 922925.
  • Rillig MC & Allen MF (1999) What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2? Mycorrhiza 9: 18.
  • Rincón A, Valladares F, Gimeno TE & Pueyo JJ (2008) Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol 28: 16931701.
  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y & Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2: 404416.
  • Rodríguez-Salazar J, Suárez R, Caballero-Mellado J & Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296: 5259.
  • Rouhier H & Read DJ (1998) Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedlings of Pinus sylvestris. Environ Exp Bot 40: 237246.
  • Ruiz-Lozano JM, Azcon R & Gomez M (1995) Effects of arbuscular mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microb 61: 456460.
  • Runion GB, Mitchell RJ, Rogers HH, Prior SA & Counts TK (1997) Effects of nitrogen and water limitation and elevated atmospheric CO2 on ectomycorrhiza of longleaf pine. New Phytol 137: 681689.
  • Rygiewicz PT, Martin KJ & Tuininga AR (2000) Morphotype community structure of ectomycorrhizas on Douglas-fir (Pseudotsuga menziesii Mirb. Franco) seedlings grown under elevated atmospheric CO2 and temperature. Oecologia 124: 299308.
  • Sanders IR, Streitwolf-Engel R, Van Der Heijden MGA, Boller T & Wiemken A (1998) Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia 117: 496503.
  • Sarig S, Blum A & Okon Y (1988) Improvement of water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agr Sci 110: 271277.
  • Schellenbaum L, Muller J, Boller T, Wiemken A & Schüepp H (1998) Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol 138: 5966.
  • Schmidt CS, Agostini F, Leifert C & Mullins CE (2004) Influence of soil temperature and matric potential on sugar beet seedling colonization and suppression of Pythium damping-off by the antagonistic bacteria Pseudomonas fluorescens and Bacillus subtilis. Phytopathology 94: 351363.
  • Schortemeyer M, Hartwig UA, Hendrey GR & Sadowsky MJ (1996) Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biol Biochem 28: 17171724.
  • Seegmüller S & Rennenberg H (1994) Interactive effects of mycorrhization and elevated carbon dioxide on growth of young pedunculate oak (Quercus robur L.) trees. Plant Soil 167: 325329.
  • Seegmüller S, Schulte M, Herschbach C & Rennenberg H (1996) Interactive effects of mycorrhization and elevated atmospheric CO2 on sulphur nutrition of young pedunculate oak (Quercus robur L.) trees. Plant Cell Environ 19: 418426.
  • Sessitsch A, Howieson JG, Perret X, Antoun H & Martinez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21: 323378.
  • Sherameti I, Tripathi S, Varma A & Oelmüller R (2008) The root-colonizing endophyte Piriformospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe In 21: 799807.
  • Sherwood M & Carroll G (1974) Fungal succession on needles and young twigs of old-growth Douglas fir. Mycologia 66: 499506.
  • Shi L, Guttenberger M, Kottke I & Hampp R (2002) The effect of drought on mycorrhizas of Beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza 12: 303311.
  • Smith SE & Read DJ (2009) Mycorrhizal Symbiosis, 3nd edn. Academic Press, London.
  • Staddon PL, Ramsey CB, Ostle N, Ineson P & Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. J Agr Sci 300: 11381140.
  • Staddon PL, Gregersen R & Jakobsen I (2004) The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Glob Change Biol 10: 19091921.
  • Stone JK, Bacon CW & White JF (2000) An overview of endophytic microbes: endophytism definded. Microbial Endophytes (BaconCW & WhiteJF, eds), pp. 329. Marcel Dekker Inc., New York.
  • Svenson SE, Davies FT & Meier CE (1991) Ectomycorrhizae and drought acclimation influence water relations and growth of Loblolly Pine. HortScience 26: 14061409.
  • Swaty RL, Gehring SA, Van Erl M, Theimer TC, Keim P & Whitham P (1998) Temporal variation in temperature and rainfall differentially affects ectomycorrhizal colonization at two contrasting sites. New Phytol 139: 733739.
  • Swaty RL, Deckert RJ, Whitham TG & Gehring CA (2004) Ectomycorrhizal abundance and community composition shifts with drought: predictions from tree rings. Ecology 85: 10721084.
  • Syvertsen JP & Graham JH (1999) Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO2]. Plant Soil 208: 209219.
  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A & Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53: 11951202.
  • Tang J, Xu L, Chen X & Hu S (2009) Interaction between C4 barnyard grass and C3 upland rice under elevated CO2: impact of mycorrhizae. Acta Oecologia 35: 227235.
  • Tarnawski S & Aragno M (2006) The influence of elevated pCO2 on functions and diversity of rhizosphere and soil bacterial communities. Managed Ecosystems and CO2– Case Studies, Processes and Perspectives. Series: Ecological Studies, Vol. 187 (NoesbergerJ, LongSP, NorbyRJ, StittM, HendreyGH & BlumH, eds), pp. 393412. Springer, Berlin.
  • Tarnawski S, Hamelin J, Jossi M, Aragno M & Fromin N (2006) Phenotypic structure of Pseudomonas populations is altered under elevated pCO2 in the rhizosphere of perennial grasses. Soil Biol Biochem 38: 11931201.
  • Timmusk S & Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe In 12: 951959.
  • Tingey DT, Phillips DL, Johnson MG, Storm MJ & Ball JT (1997) Effects of elevated CO2 and N fertilization on fine root dynamics and fungal growth in seedling Pinus ponderosa. Environ Exp Bot 37: 7383.
  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus and atmospheric CO2 in field studies. New Phytol 164: 347355.
  • Tylianakis JM, Didham RK, Bascompte J & Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11: 13511363.
  • Valdés M, Asbjornsen H, Gomez-Cardenas M, Juarez M & Vogt KA (2006) Drought effects on fine-root and ectomycorrhizal–root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico. Mycorrhiza 16: 117124.
  • Van Der Heijden MGA & Horton TR (2009) Socialism in soil: the importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97: 11391150.
  • Van Der Heijden MGA, Bardgett RD & Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11: 296310.
  • Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA & Van Der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186: 968979.
  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571586.
  • Waldon HB, Jenkins MB, Virginia RA & Harding EE (1989) Characteristics of woodland rhizobial population from surface- and deep-soil environments of the Sonoran Desert. Appl Environ Microb 55: 30583064.
  • Walker RF, Geisinger DR, Johnson DW & Ball JT (1995a) Interactive effects of atmospheric CO2 enrichment and soil N on growth and ectomycorrhizal colonization of ponderosa pine seedlings. Forest Sci 41: 491500.
  • Walker RF, Geisinger DR, Johnson DW & Ball JT (1995b) Enriched atmospheric CO2 and soil P effects on growth and ectomycorrhizal colonization of juvenile ponderosa pine. Forest Ecol Manag 78: 207215.
  • Walker RF, Johnson DW, Geisinger DR & Ball JT (1998) Growth and ectomycorrhizal colonization of ponderosa pine seedlings supplied different levels of atmospheric CO2 and soil N and P. Forest Ecol Manag 109: 920.
  • Welbaum G, Sturz AV, Dong Z & Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23: 175193.
  • West CP, Izekor E, Oosterhuis DM & Robbins RT (1988) The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant Soil 112: 36.
  • West CP, Izekor E, Turner KE & Elmi AA (1993) Endophyte effects on growth and persistence of tall fescue along a water-supply gradient. Agron J 85: 264270.
  • White JF Jr (1994) Taxonomic relationships among the members of the Balansiae (Clavicipitales). Biotechnology of Endophytic Fungi of Grasses (BaconCW & WhiteJFJr, eds), pp. 320. CRC Press, Boca Raton, FL.
  • White JF Jr & Reddy PV (1998) Examination of structure and molecular phylogenetic relationships of some graminicolous symbionts in genera Epichloë and Parepichloë. Mycologia 90: 226234.
  • White RH, Engelke MC, Morton SJ, Johnson-Cicalese JM & Ruemmele BA (1992) Acremonium endophyte effects on tall fescue drought tolerance. Crop Sci 32: 13921396.
  • Wright DP, Read DJ & Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21: 881891.
  • Yang J, Kloepper JW & Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14: 14.