Association of marine viral and bacterial communities with reference black carbon particles under experimental conditions: an analysis with scanning electron, epifluorescence and confocal laser scanning microscopy

Authors

  • Raffaela Cattaneo,

    1. Laboratoire d'Océanographie de Villefranche, Microbial Ecology & Biogeochemistry Group, Université Pierre et Marie Curie-Paris 6, Villefranche-sur-Mer, France
    2. Laboratoire d'Océanographie de Villefranche, CNRS-INSU, Villefranche-sur-Mer, France
    Search for more papers by this author
  • Christian Rouviere,

    1. Developmental Biology Unit, Université Pierre et Marie Curie-Paris 6, CNRS, Villefranche-sur-Mer, France
    Search for more papers by this author
  • Fereidoun Rassoulzadegan,

    1. Laboratoire d'Océanographie de Villefranche, Microbial Ecology & Biogeochemistry Group, Université Pierre et Marie Curie-Paris 6, Villefranche-sur-Mer, France
    2. Laboratoire d'Océanographie de Villefranche, CNRS-INSU, Villefranche-sur-Mer, France
    Search for more papers by this author
  • Markus G. Weinbauer

    1. Laboratoire d'Océanographie de Villefranche, Microbial Ecology & Biogeochemistry Group, Université Pierre et Marie Curie-Paris 6, Villefranche-sur-Mer, France
    2. Laboratoire d'Océanographie de Villefranche, CNRS-INSU, Villefranche-sur-Mer, France
    Search for more papers by this author

  • Editor: Patricia Sobecky

Correspondence: Markus G. Weinbauer, Laboratoire d'Océanographie de Villefranche, Microbial Ecology & Biogeochemistry Group, Université Pierre et Marie Curie-Paris 6, 06230 Villefranche-sur-Mer, France. Tel.: +43 49 376 3855; fax: +43 49 276 3834; e-mail: wein@obs-vlfr.fr

Abstract

Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass, constitutes a significant fraction of the marine organic carbon pool. However, little is known about the possible interactions of BC and marine microorganisms. Here, we report the results of experiments using a standard reference BC material in high concentrations to investigate basic principles of the dynamics of natural bacterial and viral communities with BC particles. We assessed the attachment of viral and bacterial communities using scanning electron, epifluorescence and confocal laser scanning microscopy and shifts in bacterial community composition using 16S rRNA gene denaturing gradient gel electrophoresis (DGGE). In 24-h time-course experiments, BC particles showed a strong potential for absorbing viruses and bacteria. Total viral abundance was reduced, whereas total bacterial abundance was stimulated in the BC treatments. Viral and bacterial abundance on BC particles increased with particle size, whereas the abundances of BC-associated viruses and bacteria per square micrometer surface area decreased significantly with BC particle size. DGGE results suggested that BC has the potential to change bacterial community structure and favour phylotypes related to Glaciecola sp. Our study indicates that BC could influence processes mediated by bacteria and viruses in marine ecosystems.

Ancillary