SEARCH

SEARCH BY CITATION

References

  • Andersen OK, Goldman JC, Caron DA & Dennet MR (1986) Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. Mar Ecol-Prog Ser 31: 4755.
  • Andersen T (1997) Pelagic Nutrient Cycles: Herbivores as Sources and Sinks, pp. 1280. Springer, Berlin.
  • Atkinson D (1995) Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. J Therm Biol 20: 6174.
  • Boenigk J & Arndt H (2000) Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J Eukaryot Microbiol 47: 350358.
  • Caron DA, Goldman JC, Andersen OK & Dennett MR (1985) Nutrient cycling in a microflagellate food chain. II. Population dynamics and carbon cycling. Mar Ecol-Prog Ser 24: 243254.
  • Caron DA, Goldman JC & Dennett MR (1986) Effect of temperature on growth, respiration, and nutrient regeneration by an omnivorous microflagellate. Appl Environ Microb 52: 13401347.
  • Chrzanowski TH & Grover JP (2008) Element content of Pseudomonas fluorescens varies with growth rate and temperature: a replicated chemostat study addressing ecological stoichiometry. Limnol Oceanogr 53: 12421251.
  • Chrzanowski TH & Kyle M (1996) Ratios of carbon, nitrogen and phosphorus in Pseudomonas fluorescens as a model for bacterial element ratios and nutrient regeneration. Aquat Microb Ecol 10: 115122.
  • Chrzanowski TH, Kyle M, Elser JJ & Sterner RW (1996) Element ratios and growth dynamics of bacteria in an oligotrophic Canadian Shield lake. Aquat Microb Ecol 11: 119125.
  • Chrzanowski TH, Lukomski NC & Grover JP (2010) Element stoichiometry of a mixotrophic protist grown under varying resource conditions. J Eukaryot Microbiol 57: 322327.
  • Cotner JB, Makino WA & Biddanda BA (2006) Temperature affects stoichiometry and biochemical composition of Escherichia coli. Microb Ecol 52: 2633.
  • Eccleston-Parry JD & Leadbeater BSC (1995) Regeneration of phosphorus and nitrogen by four species of heterotrophic nanoflagellates feeding on three nutritional states of a single bacterial strain. Appl Environ Microb 61: 10331038.
  • Elser JJ & Urabe J (1999) The stoichiometry of consumer driven nutrient recycling: theory, observations and consequences. Ecology 80: 745751.
  • Elser JJ, Dobberfuhl DR, MacKay NA & Schampel JH (1996) Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. Bioscience 46: 674684.
  • Fenchel T (1982) Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar Ecol-Prog Ser 8: 225231.
  • Francisco DE, Mah RA & Rabin AC (1973) Acridine orange-epifluorescence technique for counting bacteria in natural waters. Trans Am Micros Soc 92: 416421.
  • Goldman JC, Caron DA, Andersen OK & Dennett MR (1985) Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. Mar Ecol-Prog Ser 24: 231242.
  • Goldman JC, Caron DA & Dennett MR (1987) Nutrient cycling in a microflagellate food chain: IV. Phytoplankton–microflagellate interactions. Mar Ecol-Prog Ser 38: 7587.
  • Grover JP (2002) Stoichiometry, herbivory and competition for nutrients: simple models based on plankton ecosystems. J Theor Biol 214: 599618.
  • Grover JP (2003) The impact of variable stoichiometry on predator-prey interactions: a multinutrient approach. Am Nat 162: 2943.
  • Grover JP (2004) Predation, competition and nutrient recycling: a stoichiometric approach with multiple nutrients. J Theor Biol 229: 2943.
  • Grover JP & Chrzanowski TH (2006) Stoichiometry and growth kinetics in the “smallest zooplankton”– phagotrophic flagellates. Arch Hydrobiol 167: 467487.
  • Grover JP & Chrzanowski TH (2009) Dynamics and nutritional ecology of a nanoflagellate preying on bacteria. Microb Ecol 58: 231243.
  • Hall SR (2004) Stoichiometrically explicit competition between grazers: species replacement, coexistence, and priority effects along resource supply gradients. Am Nat 164: 157172.
  • Hessen DO & Bjerking B (1997) A model approach to planktonic stoichiometry and consumer-resource stability. Freshwater Biol 38: 447471.
  • Loladze I, Kuang Y, Elser JJ & Fagan W (2004) Coexistence of two predators on one prey mediated by stoichiometry. Theor Pop Biol 65: 115.
  • Makino W, Cotner JB, Sterner RW & Elser JJ (2003) Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct Ecol 17: 121130.
  • Montagnes DJ & Franklin DJ (2001) Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol Oceanogr 46: 20082018.
  • Nakano S (1994) Carbon:nitrogen:phosphorus ratios and nutrient regeneration of a heterotrophic flagellate fed on bacteria with different elemental ratios. Arch Hydrobiol 129: 257271.
  • Rhee GY & Gotham IJ (1981) The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol Oceanogr 26: 635648.
  • Shannon SP, Chrzanowski TH & Grover JP (2007) Prey food quality affects flagellate ingestion rates. Microb Ecol 56: 6673.
  • Starr RC (1978) The culture collection of algae at the University of Texas at Austin. J Phycol 14: 47100.
  • Sterner RW (1990) The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. Am Nat 136: 209229.
  • Sterner RW & Elser JJ (2002) Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ.
  • Strickland J & Parsons T (1972) A practical handbook of seawater analysis. Bull Fish Res Bd Can 167: 1310.
  • Thompson PA, Guo M & Harrison PJ (1992) Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton. J Phycol 28: 481488.
  • Vrede K, Heldal M, Norland S & Bratbak G (2002) Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Appl Environ Microb 68: 29652971.
  • Wang H, Jiang L & Weitz JS (2009) Bacterivorous flagellates facilitate organic matter decomposition: a stoichiometric modeling approach. FEMS Microbiol Ecol 69: 170179.