SEARCH

SEARCH BY CITATION

References

  • Altschul SF , GishW, MillerW, MyersEW & LipmanDJ (1990) Basic local alignment search tool. J Mol Biol215: 403410.
  • Andreoni V , BaggiG, ColomboM, CavalcaL, ZangrossiM & BernasconiS (1998) Degradation of 2,4,6-trichlorophenol by a specialized organism and by indigenous soil microflora: bioaugmentation and self-remediability for soil restoration. Lett Appl Microbiol 27: 8692.
  • Baker GC , SmithJJ & CowanDA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Meth55: 541555.
  • Barbeau C , DeschênesL, KaramanevD, ComeauY & SamsonR (1997) Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using activated soil. Appl Microbiol Biot48: 745752.
  • Boyd EM , KillhamK & MehargAA (2001) Toxicity of mono-, di- and tri-chlorophenols to lux marked terrestrial bacteria, Burkholderia species Rasc c2 and Pseudomonas fluorescens. Chemosphere43: 157166.
  • Caliz J , VilaX, MartíE, SierraJ, NordgrenJ, LindgrenPE, BañerasL & MontserratG (2011) The microbiota of an unpolluted calcareous soil faces up chlorophenols: evidences of resistant strains with potential for bioremediation. Chemosphere 83: 104116.
  • Campbell J , ClarkJ & ZakJ (2009) PCR-DGGE comparison of bacterial community structure in fresh and archived soils sampled along a Chihuahuan Desert elevational gradient. Microb Ecol57: 261266.
  • Carvalho M , MartinsI, LeitãoMet al. (2009) Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J Ind Microbiol Biot36: 12491256.
  • Cea M , JorqueraM, RubilarO, LangerH, TortellaG & DiezMC (2010) Bioremediation of soil contaminated with pentachlorophenol by Anthracophyllum discolor and its effect on soil microbial community. J Hazard Mater181: 315323.
  • Chaudri AM , LawlorK & McGrathSP (2000) Pentachlorophenol utilization by indigenous soil microorganisms. Soil Biol Biochem32: 429432.
  • Dechesne A , OwsianiakM, BazireA, GrundmannG, BinningPJ & SmetsBF (2010) Biodegradation in a partially saturated sand matrix: compounding effects of water content, bacterial spatial distribution, and motility. Environ Sci Technol 44: 23862392.
  • Evans FF , SeldinL, SebastianGV, KjellebergS, HolmströmC & RosadoAS (2004) Influence of petroleum contamination and biostimulation treatment on the diversity of Pseudomonas spp. in soil microcosms as evaluated by 16S rRNA based-PCR and DGGE. Lett Appl Microbiol38: 9398.
  • FAO-UNESCO (ed.) (1998) World Reference Base for Soil Resources. FAO-UNESCO, Rome.
  • Feltrer R , Álvarez-RodríguezML, BarreiroC, GodioRP & CoqueJR (2010) Characterization of a novel 2,4,6-trichlorophenol-inducible gene encoding chlorophenol O-methyltransferase from Trichoderma longibrachiatum responsible for the formation of chloroanisoles and detoxification of chlorophenols. Fungal Genet Biol47: 458467.
  • Field J & SierraAlvarezR (2008) Microbial degradation of chlorinated phenols. R Environ Sci Biotechnol7: 211241.
  • Francisco R , MorenoA & MoraisP (2010) Different physiological responses to chromate and dichromate in the chromium resistant and reducing strain Ochrobactrum tritici 5bvl1. BioMetals83: 714725.
  • Gardes M & BrunsTD (1993) ITS Primers with Enhanced Specificity for Basidiomycetes, Vol. 2. Blackwell Publishing Ltd, Oxford, pp. 113118.
  • Goswami M , RecioE, CampoyS, MartínJF & CoqueJR (2007) Environmental significance of O-demethylation of chloroanisoles by soil bacterial isolates as a mechanism that improves the overall biodegradation of chlorophenols. Environ Microbiol9: 25122521.
  • Häggblom MM & ValoRJ (1995) Bioremediation of chlorophenol wastes. Microbial Transformation and Degradation of Toxic Organic Chemicals (YoungLY & CernigliaCE, eds), pp. 389434. Wiley-Liss Inc., New York.
  • Hobbie SE & GoughL (2004) Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia140: 113124.
  • Huber T , FaulknerG & HugenholtzP (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 23172319.
  • IARC (1987) Some halogenated hydrocarbons and pesticide exposures. Monographs on the evaluation of carcinogenic risks to humans. Vol. 41, Lyon, France.
  • Janssen PH , YatesPS, GrintonBE, TaylorPM & SaitM (2002) Improved culturability of soil bacteria andisolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microb68: 23912396.
  • Kallimanis A , KavakiotisK, PerisynakisA, SproerC, PukallR, DrainasC & KoukkouAI (2009) Arthrobacter phenanthrenivorans sp. nov. to accommodate the phenanthrene-degrading bacterium Arthrobacter sp. strain Sphe3. Int J Syst Evol Micr59: 275279.
  • Kenaga E (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotox Environ Safe4: 2638.
  • Kharoune L , KharouneM & LebeaultJM (2002) Aerobic degradation of 2,4,6-trichlorophenol by a microbial consortium – selection and characterization of microbial consortium. Appl Microbiol Biot59: 112117.
  • Kimura M & AsakawaS (2006) Comparison of community structures of microbiota at main habitats in rice field ecosystems based on phospholipid fatty acid analysis. Biol Fert Soils43: 2029.
  • Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics (StackebrantE & GoodfellowM, eds), pp. 115175. John Wiley & Sons, Chichester, UK.
  • Leigh MB , ProuzovaP, MackovaM, MacekT, NagleDP & FletcherJS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microb72: 23312342.
  • Li J , DaiJ, ChenX & ZhuP (2008) Microbial transformation of cephalomannine by Luteibacter sp. J Nat Prod71: 742742.
  • Ludwig W , StrunkO, WestramRet al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 13631371.
  • Mahmood S , PatonG & ProsserJ (2005) Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environ Microbiol7: 13491360.
  • McCaig A , GraystonS, ProsserJ & GloverA (2001a) Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiol Ecol35: 3748.
  • McCaig AE , GloverLA & ProsserJI (2001b) Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl Environ Microb67: 45544559.
  • McGrath R & SingletonI (2000) Pentachlorophenol transformation in soil: a toxicological assessment. Soil Biol Biochem 32: 13111314.
  • Mera N & IwasakiK (2007) Use of plate-wash samples to monitor the fates of culturable bacteria in mercury- and trichloroethylene-contaminated soils. Appl Microbiol Biot77: 437445.
  • Muyzer G & SmallaK (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Anton Leeuw Int J73: 127141.
  • Muyzer G , de WaalEC & UitterlindenAG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb59: 695700.
  • Muyzer G , TeskeA, WirsenC & JannaschH (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol164: 165172.
  • Nordin K , UnellM & JanssonJK (2005) Novel 4-chlorophenol degradation gene cluster and degradationroute via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microb71: 65386544.
  • OECD (2000) OECD guidelines for the testing of chemicals. Soil microorganisms: carbon transformation test, 217.
  • Okeke BC , PatersonA, SmithJE & Watson-CraikIA (1997) Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Appl Microbiol Biot48: 563569.
  • Pepi M , LobiancoA, RenziMet al. (2009) Two naphthalene degrading bacteria belonging to the genera Paenibacillus and Pseudomonas isolated from a highly polluted lagoon perform different sensitivities to the organic and heavy metal contaminants. Extremophiles13: 839848.
  • Prat C , Ruiz-RuedaO, TriasR, AnticoE, CaponeD, SeftonM & BanerasL (2009) Molecular fingerprinting by PCR-denaturing gradient gel electrophoresis reveals differences in the levels of microbial diversity for musty-earthy tainted corks. Appl Environ Microb75: 19221931.
  • Pruesse E , QuastC, KnittelK, FuchsBM, LudwigW, PepliesJ & GlocknerFO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 71887196.
  • Pu X & CutrightT (2007) Degradation of pentachlorophenol by pure and mixed cultures in two different soils. Environ Sci Pollut R14: 244250.
  • Reith F , DrakeHL & KüselK (2002) Anaerobic activities of bacteria and fungi in moderately acidic conifer and deciduous leaf litter. FEMS Microbiol Ecol41: 2735.
  • Rubilar O , FeijooG, DiezC, Lu-ChauTA, MoreiraMT & LemaJM (2007) Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolor. Ind Eng Chem Res46: 67446751.
  • Rubilar O , DiezMC & GianfredaL (2008) Transformation of chlorinated phenolic compounds by white rot fungi. Crit Rev Env Sci Tec38: 227268.
  • Saber DL & CrawfordRL (1985) Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Microbiol Biot50: 15121518.
  • Shah S & ThakurIS (2002) Enrichment and characterization of a microbial community from tannery effluent for degradation of pentachlorophenol. World J Microb Biot18: 693698.
  • Singh AK , GhodkeI & ChhatparHS (2009) Pesticide tolerance of Paenibacillus sp. D1 and its chitinase. J Environ Manage91: 358362.
  • Smit E , LeeflangP, GommansS, van den BroekJ, van MilS & WernarsK (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microb67: 22842291.
  • Spagnuolo M , PuglisiE, VernileP, BariG, de LilloE, TrevisanM & RuggieroP (2010) Soil monitoring of pentachlorophenol by bioavailability and ecotoxicity measurements. J Environ Monitor12: 15751581.
  • Stanlake GJ & FinnRK (1982) Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl Environ Microb44: 14211427.
  • Steiert JG , PignatelloJJ & CrawfordRL (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl Microbiol Biot53: 907910.
  • Tuomela M , LyytikäinenM, OivanenP & HatakkaA (1998) Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol Biochem31: 6574.
  • Uhlik O , JecnaK, MackovaMet al. (2009) Biphenyl-metabolizing bacteria in the thizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microb75: 64716477.
  • US National Library of Medicine (2008) Hazardous Substance Database of the Toxnet. http://toxnet.nlm.nih.gov/index.html [accessed March 2011].
  • Van Agteren MH , KeuningS & JanssenDB (1998) Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds. Kluwer Academic Publishers, London.
  • van Gestel CAM & MaWC (1988) Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. Ecotox Environ Safe15: 289297.
  • Vrdoljak G , FeilWS, FeilH, DetterJC & FieldsP (2005) Characterization of a diesel sludge microbial consortia for bioremediation. Scanning27: 814.
  • Wang L , WangGL, LiSP & JiangJD (2010) Luteibacter jiangsuensis sp. nov.: a methamidophos-degrading bacterium isolated from a methamidophos-manufacturing factory. Curr Microbiol 62: 289295.
  • Webb BN , BallingerJW, KimEet al. (2010) Characterization of chlorophenol 4-monooxygenase (TftD) and NADH: FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100. J Biol Chem 285: 20142027.
  • White TJ , BrunsT, LeeS & TaylorJ (1990) Amplification and direct sequencing of fungal rRNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications (InnisDHG MA, SninskyJJ & WhiteTJ, eds), pp. 315322. Academic Press Inc., San Diego, CA.
  • Wu S , ZhangL, WangJ & ChenJ (2007) Bacillus circulans WZ-12 – a newly discovered aerobic dichloromethane-degrading methylotrophic bacterium. Appl Microbiol Biot76: 12891296.
  • Xun L , ToppE & OrserCS (1992) Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol174: 80038007.
  • Yang CF , LeeCM & WangCC (2006) Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere62: 709714.
  • Yoon JH , LeeH, YeoSH & ChoiJE (2004) Janibacter melonis sp. nov., isolated from abnormally spoiled oriental melon in Korea. Int J Syst Evol Micr54: 19751980.
  • Zhuang WQ , TayJH, MaszenanAM & TaySL (2002) Bacillus naphthovorans sp. nov. from oil-contaminated tropical marine sediments and its role in naphthalene biodegradation. Appl Microbiol Biot58: 547554.