SEARCH

SEARCH BY CITATION

References

  • Alonso C & Pernthaler J (2005) Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters. Appl Environ Microb 71: 17091716.
  • Aquilina A, Knab NJ, Knittel K et al. (2010) Biomarker indicators for anaerobic oxidizers of methane in brackish-marine sediments with diffusive methane fluxes. Org Geochem 41: 414426.
  • Beal EJ, House CH & Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325: 184187.
  • Bedard DL, Bailey JJ, Reiss BL & Van Slyke Jerzak G (2006) Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate Aroclor 1260. Appl Environ Microb 72: 24602470.
  • Biddle JF, Lipp JS, Lever MA et al. (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. P Natl Acad Sci USA 103: 38463851.
  • Blazejak A & Schippers A (2010) High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol 72: 198207.
  • Boetius A, Ravenschlag K, Schubert C, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U & Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623626.
  • Dale AW, Aguilera DR, Regnier P, Fossing H, Knab NJ & Jørgensen BB (2008) Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments. J Mar Res 66: 127155.
  • Dale AW, Regnier P, Van Cappellen P, Fossing H, Jensen JB & Jørgensen BB (2009) Remote quantification of methane fluxes in gassy marine sediments through seismic survey. Geology 37: 235238.
  • Fossing H (2005) Geochemistry and sulphate, reduction rate of sediment core HN04F-165GC. METROL Report. DOI: DOI: 10.1594/PANGAEA.326452.
  • Fry JC (1988) Determination of biomass. Methods in Aquatic Bacteriology (AustinB, ed), pp. 2772. John Wiley & Sons, Chichester.
  • Fry JC, Webster G, Cragg BA, Weightman AJ & Parkes RJ (2006) Analysis of DGGE profiles to explore the relationship between prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58: 8698.
  • Fry JC, Parkes RJ, Cragg BA, Weightman AJ & Webster G (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66: 181196.
  • Glud RN, Gundersen JK, Røy H & Jørgensen BB (2003) Seasonal dynamics of benthic O2 uptake in a semienclosed bay: importance of diffusion and faunal activity. Limnol Oceanogr 48: 12651276.
  • Godon JJ, Morinière J, Moletta M, Gaillac M, Bru V & Delgènes JP (2005) Rarity associated with specific ecological niches in the bacterial world: the ‘Synergistes’ example. Environ Microbiol 7: 213224.
  • Halbach P, Holzbecher E, Reichel T & Moche R (2004) Migration of the sulphate-methane reaction zone in marine sediments of the Sea of Marmara – can this mechanism be tectonically induced? Chem Geol 205: 7382.
  • Hales B, Edwards C, Ritchie D, Hall G, Pickup R & Saunders J (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microb 62: 668675.
  • Hallam SJ, Girguis PR, Preston CM, Richardson PM & DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microb 69: 54835491.
  • Hamden LJ, Gillevet PM, Sikaroodi M, Pohlman JW, Plummer RE & Coffin RB (2008) Geomicrobial characterization of gas hydrate-bearing sediments along the mid-Chilean margin. FEMS Microbiol Ecol 65: 1530.
  • Harrison BK, Zhang H, Berelson W & Orphan VJ (2009) Variations in archaeal and bacterial diversity associated with the sulfate–methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microb 75: 14871499.
  • Heizmann WR & Werner H (1989) GasPack versus Anaerocult A – two carbon dioxide/hydrogen systems for cultivation of anaerobes. Zentralbl Bakt P Inf 270: 511516.
  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG & DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398: 802805.
  • Huber JA, Butterfield DA & Baross JA (2002) Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microb 68: 15851594.
  • Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Neaslon KH & Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microb 69: 72247235.
  • Inagaki F, Nunoura T, Nakagawa S et al. (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin. P Natl Acad Sci USA 103: 28152820.
  • Iversen N & Jørgensen BB (1985) Anaerobic methane oxidation rates at the sulphate–methane transition in marine sediments Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30: 944955.
  • Kasten S & Jørgensen BB (2000) Sulfate reduction in marine sediments. Marine Geochemistry (SchulzHD & ZabelM, eds), pp. 263281. Springer-Verlag, Berlin.
  • Knittel K & Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63: 311334.
  • Knittel K, Lösekann T, Boetius A, Kort R & Amann R (2005) Diversity and distribution of methanotrophic Archaea at cold seeps. Appl Environ Microb 71: 467479.
  • Köpke B, Wilms R, Engelen B, Cypionka H & Sass H (2005) Microbial diversity in coastal subsurface sediments – a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microb 71: 78197830.
  • Laier T & Jensen JB (2007) Shallow gas depth-contour map of the Skagerrak-western Baltic Sea region. Geo-Mar Lett 27: 127141.
  • Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C & Jørgensen BB (2009) Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol 11: 12781291.
  • Liu Y & Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea. Ann NY Acad Sci 1125: 171189.
  • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A & Amann A (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microb 73: 33483362.
  • Luton PE, Wayne JM, Sharp RJ & Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfills. Microbiology 148: 35213530.
  • Martens-Habbena W & Sass H (2006) Sensitive determination of microbial growth by nucleic acid staining in aqueous suspension. Appl Environ Microb 72: 8795.
  • Menes RJ & Muxi L (2002) Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int J Syst Evol Micr 52: 157164.
  • Meyerdierks A, Kube M, Lombardot T, Knittel K, Bauer M, Glöckner FO, Reinhardt R & Amann R (2005) Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ Microbiol 7: 19371951.
  • Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R & Rudolf Amann R (2009) Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 12: 422439.
  • Nauhaus K, Albrecht M, Elvert M, Boetius A & Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia by anaerobic oxidation of methane with sulphate. Environ Microbiol 9: 187196.
  • Nelson KA, Moin NS & Bernhard AE (2009) Archaeal diversity and the prevalence of Crenarchaeota in salt marsh sediments. Appl Environ Microb 75: 42114215.
  • Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ & Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6: 274287.
  • Niemann H, Elvert M, Hovland M et al. (2005) Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences 2: 335351.
  • Oremland RS, Marsh LM & Polcin S (1982) Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296: 143145.
  • Oren A (2006) A procedure for the selective enrichment of Halobacteroides halobius and related bacteria from anaerobic hypersaline sediments. FEMS Microbiol Lett 42: 201204.
  • Orphan VJ, Hinrichs KU, Ussler W III, Paull CK, Taylor LT, Sylva SP, Hayes JM & DeLong EF (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microb 67: 19221934.
  • O'Sullivan LA, Webster G, Fry JC, Parkes JC & Weightman AJ (2008) Modified linker-PCR primers facilitate complete sequencing of DGGE DNA fragments. J Microbiol Meth 75: 579581.
  • Parkes RJ, Cragg BA, Bale SJ, Goodman K & Fry JC (1995) A combined ecological and physiological approach to studying sulphate reduction within deep marine sediment layers. J Microbiol Meth 23: 235249.
  • Parkes RJ, Cragg BA & Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8: 1128.
  • Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer J, Jørgensen BB, Aiello IW & Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436: 390394.
  • Parkes RJ, Cragg BA, Banning N et al. (2007) Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ Microbiol 9: 11461161.
  • Parkes RJ, Sass H, Webster G, Watkins AJ, Weightman AJ, O'Sullivan LA & Cragg BA (2010) Methods for studying methanogens and methanogenesis in marine sediments. Handbook of Hydrocarbon and Lipid Microbiology (TimmisKN, ed), pp. 37993826. Springer-Verlag, Berlin.
  • Pham VD, Hnatow LL, Zhang S, Fallon RD, Jackson SC, Tomb JF, DeLong EF & Keeler SJ (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ Microbiol 11: 176187.
  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107: 486513.
  • Rees GN, Patel BK, Grassia GS & Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47: 150154.
  • Roussel EG, Sauvadet AL, Allard J, Chaduteau C, Richard P, Cambon Bonavita MA & Chaumillon E (2009) Archaeal methane cycling communities associated with gassy subsurface sediments of Marennes-Oléron Bay (France). Geomicrobioly J 26: 3143.
  • Shlimon AG, Friedrich MW, Niemann H, Ramsing NB & Finster K (2004) Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Micr 54: 759763.
  • Sørensen KB & Teske A (2006) Stratified communities of active Archaea in deep marine subsurface sediments. Appl Environ Microb 72: 45964603.
  • Thomsen TR, Finster K & Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microb 67: 16461656.
  • Treude T, Niggemann J, Kallmeyer J, Wintersteller P, Schubert CJ, Boetius A & Jørgensen BB (2005) Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim Cosmochim Ac 69: 27672779.
  • Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA & Reysenbach AL (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microb 65: 43754384.
  • Walsh PS, Metzger DA & Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 506513.
  • Webster G, Newberry CJ, Fry JC & Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Meth 55: 155164.
  • Webster G, Parkes RJ, Fry JC & Weightman AJ (2004) Widespread occurrence of a novel division of bacteria identified by 16S rRNA gene sequences originally found in deep marine sediments. Appl Environ Microb 70: 57085713.
  • Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ & Fry JC (2006a) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58: 6585.
  • Webster G, Watt LC, Rinna J, Fry JC, Evershed RP, Parkes RJ & Weightman AJ (2006b) A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulphate-reducing marine sediment enrichments. Environ Microbiol 8: 15751589.
  • Webster G, Yarram L, Freese E, Köster J, Sass H, Parkes RJ & Weightman AJ (2007) Distribution of candidate division JS1 and other Bacteria in tidal sediments of the German Wadden Sea using targeted 16S rRNA gene PCR-DGGE. FEMS Microbiol Ecol 62: 7889.
  • Webster G, Blazejak A, Cragg BA et al. (2009) Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environ Microbiol 11: 239257.
  • Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ & Parkes RJ (2010) Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 72: 179197.
  • Wegener G, Shovitri M, Knittel K, Niemann H, Hovland M & Boetius A (2008) Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea). Biogeosciences 5: 11271144.
  • Yamada T & Sekiguchi Y (2009) Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi‘Subphylum I’ with natural and biotechnological relevance. Microb Environ 24: 205216.
  • Zavarzina DG, Zhilina TN, Tourova TP, Kuznetsov BB, Kostrikina NA & Bonch-Osmolovskaya EA (2000) Thermanaerovibrio velox sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio. Int J Syst Evol Micr 50: 12871295.