SEARCH

SEARCH BY CITATION

References

  • Andrews JH & Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38: 145180.
  • Attieh JM, Hanson AD & Saini HS (1995) Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. J Biol Chem 270: 92509257.
  • Attieh JM, Sparace S & Saini HS (2000) Purification and properties of multiple isoforms of a novel thiol methyltransferase involved in the production of volatile sulfur compounds from Brassica oleracea. Arch Biochem Biophys 380: 257266.
  • Borodina E, Cox M, McDonald IR & Murrell J (2005) Use of DNA-stable isotope probing and functional gene probes to investigate the diversity of methyl chloride-utilizing bacteria in soil. Environ Microbiol 7: 13181328.
  • Clerbaux C, Cunnold DM, Anderson J et al. (2007) Halogenated long-lived compounds, scientific assessment of ozone depletion: 2006. Global Ozone Research and Monitoring Project 10, Report No. 50. World Meteorological Organization, Geneva.
  • Coulter C, Hamilton JTG, McRoberts WC, Kulakov L, Larkin MJ & Harper DB (1999) Halomethane:bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source. Appl Environ Microb 65: 43014312.
  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C & Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. P Natl Acad Sci USA 106: 1642816433.
  • Doronina N, Sokolov A & Trotsenko Y (1996) Isolation and initial characterization of aerobic chloromethane-utilizing bacteria. FEMS Microbiol Lett 142: 179183.
  • Freedman D, Swamy M, Bell N & Verce M (2004) Biodegradation of chloromethane by Pseudomonas aeruginosa strain NB1 under nitrate-reducing and aerobic conditions. Appl Environ Microb 70: 46294634.
  • Hartmans S, Schmuckle A, Cook AM & Leisinger T (1986) Methyl chloride: naturally occurring toxicant and C-1 growth substrate. Microbiology 132: 11391142.
  • Jacobs MA, Alwood A, Thaipisuttikul I et al. (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. P Natl Acad Sci USA 100: 1433914344.
  • Jörg G & Bertau M (2004) Thiol-tolerant assay for quantitative colorimetric determination of chloride released from whole-cell biodehalogenations. Anal Biochem 328: 2228.
  • Kinkel L (1997) Microbial population dynamics on leaves. Annu Rev Phytopathol 35: 327347.
  • Knief C, Frances L, Cantet F & Vorholt JA (2008) Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl Environ Microb 74: 22182228.
  • Knief C, Ramette A, Frances L, Alonso-Blanco C & Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4: 719728.
  • McAnulla C, McDonald IR & Murrell J (2001a) Methyl chloride utilising bacteria are ubiquitous in the natural environment. FEMS Microbiol Lett 201: 151155.
  • McAnulla C, Woodall C, McDonald IR, Studer A, Vuilleumier S, Leisinger T & Murrell J (2001b) Chloromethane utilization gene cluster from Hyphomicrobium chloromethanicum strain CM2T and development of functional gene probes to detect halomethane-degrading bacteria. Appl Environ Microb 67: 307316.
  • McDonald IR, Warner I, McAnulla KC, Woodall C, Oremland R & Murrell J (2002) A review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology. Environ Microbiol 4: 193203.
  • Miller L, Connell G, Guidetti J & Oremland R (1997) Bacterial oxidation of methyl bromide in fumigated agricultural soils. Appl Environ Microb 63: 43464354.
  • Miller L, Warner G, Baesman S, Oremland R, McDonald IR, Radajewski S & Murrell J (2004) Degradation of methyl bromide and methyl chloride in soil microcosms: use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms. Geochim Cosmochim Ac 68: 32713283.
  • Moore RL (1981) The biology of Hyphomicrobium and other prosthecate budding bacteria. Annu Rev Microbiol 35: 567594.
  • Nagatoshi Y & Nakamura T (2009) Arabidopsis harmless to ozone layer protein methylates a glucosinolate breakdown product and functions in resistance to Pseudomonas syringae pv. maculicola. J Biol Chem 284: 1930119309.
  • Nemecek-Marshall M, McDonald RC, Franzen JJ, Wojciechowski CL & Fall R (1995) Methanol emission from leaves. Plant Physiol 108: 13591368.
  • Rainey FA, Ward-Rainey N, Gliesche CG & Stackebrandt E (1998) Phylogenetic analysis and intrageneric structure of the genus Hyphomicrobium and the related genus Filomicrobium. Int J Syst Bacteriol 48: 635663.
  • Raja P, Balachandar D & Sundaram S (2008) Genetic diversity and phylogeny of pink-pigmented facultative methylotrophic bacteria isolated from the phyllosphere of tropical crop plants. Biol Fert Soils 45: 4553.
  • Rhew RC, Ostergaard L, Saltzman E & Yanofsky M (2003) Genetic control of methyl halide production in Arabidopsis. Curr Biol 13: 18091813.
  • Saito T & Yokouchi Y (2008) Stable carbon isotope ratio of methyl chloride emitted from glasshouse-grown tropical plants and its implication for the global methyl chloride budget. Geophys Res Lett 35: L08807.
  • Schäfer H, McDonald IR, Nightingale P & Murrell J (2005) Evidence for the presence of a CmuA methyltransferase pathway in novel marine methyl halide-oxidizing bacteria. Environ Microbiol 7: 839852.
  • Schäfer H, Miller LG, Oremland RS & Murrell J (2007) Bacterial cycling of methyl halides. Adv Appl Microbiol 61: 307346.
  • Studer A, Vuilleumier S & Leisinger T (1999) Properties of the methylcobalamin: H4folate methyltransferase involved in chloromethane utilization by Methylobacterium sp. strain CM4. Eur J Biochem 264: 242249.
  • Studer A, Stupperich E, Vuilleumier S & Leisinger T (2001) Chloromethane: tetrahydrofolate methyl transfer by two proteins from Methylobacterium chloromethanicum strain CM4. Eur J Biochem 268: 29312938.
  • Studer A, McAnulla C, Buchele R, Leisinger T & Vuilleumier S (2002) Chloromethane-induced genes define a third C-1 utilization pathway in Methylobacterium chloromethanicum CM4. J Bacteriol 184: 34763484.
  • Suzuki MT, Taylor LT & DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microb 66: 46054614.
  • Traunecker J, Preuss A & Diekert G (1991) Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium. Arch Microbiol 156: 416421.
  • Trotsenko Y & Doronina N (2003) The biology of methylobacteria capable of degrading halomethanes. Microbiology 72: 121131.
  • Trotsenko Y, Ivanova E & Doronina N (2001) Aerobic methylotrophic bacteria as phytosymbionts. Microbiology 70: 623632.
  • Trudinger CM, Etheridge DM, Sturrock GA, Fraser PJ, Krummel PB & McCulloch A (2004) Atmospheric histories of halocarbons from analysis of Antarctic firn air: methyl bromide, methyl chloride, chloroform, and dichloromethane. J Geophys Res-Atmos 109: D22310.
  • Vannelli T, Studer A, Kertesz M & Leisinger T (1998) Chloromethane metabolism by Methylobacterium sp. strain CM4. Appl Environ Microb 64: 19331936.
  • Vannelli T, Messmer M, Studer A, Vuilleumier S & Leisinger T (1999) A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane. P Natl Acad Sci USA 96: 46154620.
  • Vuilleumier S, Chistoserdova L, Lee M-C et al. (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4: e5584.
  • Warner K, Larkin M, Harper DB, Murrell J & McDonald IR (2005) Analysis of genes involved in methyl halide degradation in Aminobacter lissarensis CC495. FEMS Microbiol Lett 251: 4551.
  • Woodall CA, Warner KL, Oremland RS, Murrell JC & McDonald IR (2001) Identification of methyl halide-utilizing genes in the methyl bromide-utilizing bacterial strain IMB-1 suggests a high degree of conservation of methyl halide-specific genes in Gram-negative bacteria. Appl Environ Microb 67: 19591963.
  • Yoshida Y, Wang Y, Zeng T & Yantosca R (2004) A three-dimensional global model study of atmospheric methyl chloride budget and distributions. J Geophys Res 109: D24309.
  • Yoshida Y, Wang Y, Shim C, Cunnold D, Blake DR & Dutton GS (2006) Inverse modeling of the global methyl chloride sources. J Geophys Res 111: D16307.