• groundwater;
  • chemolithoautotrophs;
  • RubisCO genes


Groundwater polluted with methyl-tert-butyl ether (MTBE) and ammonium was investigated for chemolithoautotrophic CO2 fixation capabilities based on detailed analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large subunit genes. Samples retrieved from a groundwater conditioning unit, characterized by different redox conditions, were examined for the presence of form IA, form IC (cbbL) and form II (cbbM) RubisCO genes and transcripts obtained from DNA- and RNA-extracts. Form IA RubisCO sequences, which revealed a complex and distinct variety in different sampling stations, were expressed in the original groundwater and in samples amended with oxygen, but not in the aquifer groundwater enriched with nitrate. Form IC RubisCO genes were exclusively detected in groundwater supplied with oxygen and sequences were affiliated with cbbL genes in nitrifying bacteria. cbbM genes were not expressed in the oxygen-amended groundwater, probably due to the low CO2/O2 substrate specificity of this enzyme. Most form II RubisCO transcripts were affiliated with RubisCO genes of denitrifiers, which are important residents in the groundwater supplied with nitrate. The distinct distribution pattern and diversity of RubisCO genes and transcripts obtained in this study suggest that the induction of different RubisCO enzymes is highly regulated and closely linked to the actual environmental conditions.