SEARCH

SEARCH BY CITATION

References

  • Akob DM, Mills HJ, Gihring TM et al. (2008) Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments. Appl Environ Microbiol 74: 31593170.
  • Alfreider A, Krössbacher M & Psenner R (1997) Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res 31: 832840.
  • Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403410.
  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26: 3246.
  • Anderson RT, Vrionis HA, Ortiz-Bernad I et al. (2003) Stimulating the in-situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69: 58845891.
  • Anneser B, Pilloni G, Bayer A, Lueders T, Griebler C, Einsiedl F & Richters L (2010) High resolution analysis of contaminated aquifer sediments and groundwater - what can be learned in terms of natural attenuation?. Geomicro J 27: 130142.
  • Bak F & Widdel F (1986) Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. Arch Microbiol 146: 170176.
  • Brodie EL, Desantis TZ, Joyner DC et al. (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72: 62886298.
  • Brodie EL, Desantis TZ, Moberg JP, Zubietta IX, Piceno YM & Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. PNAS 104: 299304.
  • Caccavo F, Blakemore RP & Lovley DR (1992) A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire. Appl Environ Microbiol 58: 32113216.
  • Callister SJ, Wilkins MJ, Nicora CD et al. (2010) Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles. Environ Sci Technol 44: 88978903.
  • Campbell LL & Postgate JR (1965) Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29: 359363.
  • Chang SC & Jackson ML (1957) Fractionation of soil phosphorus. Soil Sci 84: 133144.
  • Chang YJ, Long PE, Geyer R et al. (2005) Microbial incorporation of 13C-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI). Environ Sci Technol 39: 90399048.
  • Culhane AC, Thioulouse J, Perrière G & Higgins DG (2005) MADE4: an R package for multivariate analysis of gen expression data. Bioinformatics 21: 27892790.
  • Dar SA, Kleerebezem R, Stams AJ, Kuenen JG & Muyzer G (2008) Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Microbiol Biotechnol 78: 10451055.
  • DeAngelis KM, Allgaier M, Chavarria Y, Fortney JL, Hugenholtz P, Simmons B, Sublette K, Silver WL & Hazen TC (2011) Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS ONE 6: e19306.
  • DeSantis TZ, Stone CE, Murray SR, Moberg JP & Andersen GL (2005) Rapid quantification and taxonomic classification of environmental DNA from both prokaryotic and eukaryotic origins using a microarray. FEMS Microbiol Lett 245: 271278.
  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM & Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53: 371383.
  • Dias M, Salvado JC, Monperrus M, Caumette P, Amouroux D, Duran R & Guyoneaud R (2008) Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst Appl Microbiol 31: 3037.
  • Eisenmann E, Beuerle J, Sulger K, Kroneck PMH & Schumacher W (1995) Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia. Arch Microbiol 164: 180185.
  • Fields MW, Yan T, Rhee S-K, Carroll SL, Jardine PM, Watson DB, Criddle CS & Zhou J (2005) Impacts on microbial communities and cultivable isolates from groundwater contaminated with high levels of nitric acid–uranium waste. FEMS Microbiol Ecol 53: 417428.
  • Finneran KT, Anderson RT, Nevin KP & Lovley DR (2002a) Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam 11: 339357.
  • Finneran KT, Forbush HM, VanPraagh CV & Lovley DR (2002b) Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds. Int J Syst Evol Microbiol 52: 19291935.
  • Flynn TM, Sanford RA & Bethke CM (2008) Attached and suspended microbial communities in a pristine confined aquifer. Water Resour Res 44: W07425.
  • Godoy-Vitorino F, Goldfarb KC, Brodie EL, Garcia-Amado MA, Michelangeli F & Dominguez-Bello MG (2010) Developmental microbial ecology of the crop of the folivorous hoatzin. ISME J 4: 611620.
  • Handley KM, Hery M & Lloyd JR (2009) Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol 59: 886892.
  • Haouari O, Fardeau ML, Cayol JL, Casiot C, Elbaz-Poulichet F, Hamdi M, Joseph M & Ollivier B (2008) Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Int J Syst Evol Microbiol 58: 25292535.
  • Hazen TC, Dubinsky EA, DeSantis TZ et al. (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330: 204208.
  • Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR, Mandelco L, Schauder R, Remsen CC & Mitchell R (1994) Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161: 6269.
  • Holmes DE, Finneran KT, O'Neil RA & Lovley DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68: 23002306.
  • Holmes DE, O'Neil RA, Vrionis HA et al. (2007) Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. ISME J 1: 663677.
  • Hoor AT-T (1975) A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth J Sea Res 9: 344350.
  • Ihaka R & Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5: 299314.
  • Inagaki F, Takai K, Nealson KH & Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54: 14771482.
  • Jogler C, Niebler M, Lin W et al. (2010) Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum’ via ultrastructural, geochemical, ecological and metagenomic methods. Environ Microbiol 12: 24662478.
  • Kodama Y & Watanabe K (2004) Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int J Syst Evol Microbiol 54: 22972300.
  • Komlos J, Moon HS & Jaffe PR (2008a) Effect of sulfate on the simultaneous bioreduction of iron and uranium. J Environ Qual 37: 20582062.
  • Komlos J, Peacock A, Kukkadapu RK & Jaffe PR (2008b) Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions. Geochim Cosmochim Acta 72: 36033615.
  • Kuever J, Konneke M, Galushko A & Drzyzga O (2001) Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Int J Syst Evol Microbiol 51: 171177.
  • La Duc MT, Osman S, Vaishampayan P, Piceno Y, Andersen G, Spry JA & Venkateswaran K (2009) Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods. Appl Environ Microbiol 75: 65596567.
  • Laanbroek HJ, Geerligs HJ, Sijtsma L & Veldkamp H (1984) Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Appl Environ Microbiol 47: 329334.
  • Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics (Stackebrandt E & Goodfellow M, eds), pp. 115148. Wiley, New York.
  • Lehman MR, Colwell FS & Bala GA (2001) Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions. Appl Environ Microbiol 67: 27992809.
  • Lien T & Beeder J (1997) Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 47: 11241128.
  • Lien T, Madsen M, Steen IH & Gjerdevik K (1998) Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 48: 469474.
  • Lovley DR & Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58: 850856.
  • Lovley DR, Phillips EJP, Gorby YA & Landa ER (1991) Microbial reduction of uranium. Nature 350: 413416.
  • Lovley DR, Roden E, Phillips E & Woodward J (1993) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113: 4153.
  • Lovley DR, Holmes DE & Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Advances in Microbial Physiology, Vol. 49 (Poole RK, ed), pp. 219286. Academic Press, New York.
  • McArdle BH & Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290297.
  • Miletto M, Williams KH, N'Guessan AL & Lovley DR (2011) Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers. Appl Environ Microbiol 77: 65026509.
  • Mouser PJ, N'Guessan AL, Elifantz H, Holmes DE, Williams KH, Wilkins MJ, Long PE & Lovley DR (2009) Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater. Environ Sci Technol 43: 43864392.
  • Nevin KP, Finneran KT & Lovley DR (2003) Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment. Appl Environ Microbiol 69: 36723675.
  • North NN, Dollhopf SL, Petrie L, Istok JD, Balkwill DL & Kostka JE (2004) Change in bacterial community structure during in-situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl Environ Microbiol 70: 49114920.
  • Oude Elferink SJ, Akkermans-van Vliet WM, Bogte JJ & Stams AJ (1999) Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge. Int J Syst Bacteriol 49 (Pt 2): 345350.
  • Platen H, Temmes A & Schink B (1990) Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov. Arch Microbiol 154: 355361.
  • Postgate JR (1984) The Sulphate-Reducing Bacteria, 2nd edn. Cambridge University Press, Cambridge, New York, pp. 208.
  • Postma D & Jakobsen R (1996) Redox zonation: equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim Cosmochim Acta 60: 31693175.
  • Purdy KJ, Nedwell DB, Embley TM & Takii S (1997) Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese esturary. FEMS Microbiol Ecol 24: 221234.
  • Qafoku NP, Kukkadapu RK, McKinley JP, Arey BW, Kelly SD, Wang CM, Resch CT & Long P (2009) Uranium in framboidal pyrite from a naturally bioreduced alluvial sediment. Environ Sci Technol 43: 85288534.
  • Ramamoorthy S, Sass H, Langner H, Schumann P, Kroppenstedt RM, Spring S, Overmann J & Rosenzweig RF (2006) Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56: 27292736.
  • Shelobolina ES, Vrionis HA, Findlay RH & Lovley DR (2008) Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. Int J Syst Evol Microbiol 58: 10751078.
  • Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Pauker O & Hippe H (1997) Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47: 11341139.
  • Suzuki Y, Kelly SD, Kemner KM & Banfield JF (2004) Enzymatic U(VI) reduction by Desulfosporosinus species. Radiochim Acta 92: 1116.
  • Tamura K & Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512526.
  • Tamura K, Nei M & Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. P Natl Acad Sci USA 101: 1103011035.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 27312739.
  • Tebo BM & Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(VI), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162: 193198.
  • Tsiamis G, Katsaveli K, Ntougias S, Kyrpides N, Andersen G, Piceno Y & Bourtzis K (2008) Prokaryotic community profiles at different operational stages of a Greek solar saltern. Res Microbiol 159: 609627.
  • Vrionis HA, Anderson RT, Ortiz-Bernad I, O'Neill KR, Resch CT, Peacock AD, Dayvault R, White DC, Long PE & Lovley DR (2005) Microbiological and geochemical heterogeneity in an in-situ uranium bioremediation field site. Appl Environ Microbiol 71: 63086318.
  • Wall JD & Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60: 149166.
  • Widdel F & Pfennig N (1977) A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112: 119122.
  • Wilkins MJ, Verberkmoes NC, Williams KH et al. (2009) Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation. Appl Environ Microbiol 75: 65916599.
  • Williams KH, Long PE, Davis JA et al. (2011) Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater. Geomicro J 28: 519539.