SEARCH

SEARCH BY CITATION

References

  • Al-Hanbali HS , Sowerby SJ & Holm NG (2001) Biogenicity of silicified microbes from a hydrothermal system: relevance to the search for evidence of life on earth and other planets. Earth Planet Sci Lett 191: 213218.
  • Alt JC (1988) Hydrothermal oxide and nontronite deposits on seamounts in the Eastern Pacific. Mar Geol 81: 227239.
  • Boyd TD & Scott SD (2001) Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Geochem Trans 2: 45.
  • Chan CS , Fakra SC , Emerson D et al. (2011) Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implication for biosignature formation. ISME J 5: 717727.
  • Davis RE , Stakes DS , Wheat CG et al. (2009) Bacterial variability within an iron-silica-manganese-rich hydrothermal mound located off-axis at the Cleft Segment, Juan de Fuca Ridge. Geomicrobiol J 26: 570580.
  • Delong EF (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. 89: 56855689.
  • DeSantis TZ , Hugenholtz P , Keller K et al. (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34: W394W399.
  • Edwards KJ , Bach W , McCollom TM et al. (2004) Neutrophilic iron-oxidizing bacteria in the ocean: habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J 21: 393404.
  • Edwards KJ , Glazer BT , Rouxel OJ et al. (2011) Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive number deposition at 5000 m off Hawaii. ISME J 5: 17481758.
  • Emerson D & Moyer CL (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol 68: 30853093.
  • Emerson D , Rentz JA , Liburn TG , Davis RE , Aldrich H , Chan C & Moyer CL (2007) A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE 8: 19.
  • Emerson D , Fleming EJ & McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64: 561583.
  • Fein JB , Scott S & Rivera N (2002) The effect of Fe on Si adsorption by Bacillus subtilis cell walls: insights into non-metabolic bacterial precipitation of silicate minerals. Chem Geol 182: 265273.
  • Ferris FG , Konhauser KO , Lyven B et al. (1999) Accumulation of metals by bacteriogenic iron oxides in a subterranean environment. Geomicrobiol J 16: 181192.
  • Forget NL , Murdock SA & Juniper SK (2010) Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes. Geobiology 8: 417432.
  • Fortin D , Ferris FG & Scott SD (1998) Formation of iron-silicates and iron oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean. Am Mineral 83: 13991408.
  • Garcia-Ruiz JM (1998) Carbonate precipitation in silica-rich environments. Geology 26: 843846.
  • Halbach M , Halbach P & Luders V (2002) Sulfide-impregnated and pure silica precipitates of hydrothermal origin from the Central Indian Ocean. Chem Geol 182: 357375.
  • Hodges TW & Olson JB (2009) Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc. Appl Environ Microbiol 75: 16501657.
  • Hoek J , Banta A , Hubler F & Reysenbach A-L (2003) Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent filed on the Central Indian Ridge. Geobiology 1: 119127.
  • Hrischeva E & Scott SD (2007) Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochem Cosmochim Acta 71: 34763497.
  • Hsu-Kim H , Mullaugh KM , Tsang JJ , Yucel M & Luther GW III (2008) Formation of Zn- and Fe-sulfides near hydrothermal vents at he Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophs. Geochem Trans 9: 114.
  • Huber T , Faulkner G & Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 23172319.
  • Inagaki F , Takai K , Kobayashi H , Nealson KH & Horikoshi K (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the mid-Okinawa Trough. Int J Syst Evol Microbiol 53: 18011805.
  • Juniper SK & Fouquet Y (1988) Filamentous iron-silica deposits from modern and ancient hydrothermal sites. Can Mineral 26: 859869.
  • Kato S , Kobayashi C , Kakegawa T & Yamagishi A (2009) Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the southern Mariana Trough. Environ Microbiol 11: 20942111.
  • Kennedy CB , Scott SD & Ferris FG (2003) Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, northeast Pacific Ocean. Geomicrobiol J 20: 199214.
  • Konhauser KO , Jones B , Phoenix VR , Ferris G & Renaut RW (2004) The microbial role in hot spring silicification. Ambio 33: 552557.
  • Konneke M , Bernhard AE , de la Torre JR , Walker CB , Waterbury JB & Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543546.
  • Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics ( Stackebrandt E & Goodfellow M eds), p. 115175. Wiley, Chichester, UK.
  • Langley S , Igric P , Takahashi Y et al. (2009) Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean. Geobiology 7: 3549.
  • Lee ZM , Bussema C III & Schmidt TM (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37: D489D493.
  • McAllister SM , Davis RE , McBeth JM et al. (2011) Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing zetaproteobacteria. Appl Environ Microbiol 77: 54455457.
  • Moyer CL , Dobbs FC & Karl DM (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 61: 15551562.
  • Nunoura T & Takai K (2009) Comparison of microbial communities associated with phase-seperation-induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough. FEMS Microbiol Ecol 67: 351370.
  • Peng X , Zhou H , Yao H et al. (2007) Microbe-related precipitation of iron and silica in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge. Chin Sci Bull 52: 32333238.
  • Peng X , Zhou H , Li J et al. (2010) Intracellular and extracellular mineralization of a microbial community in the Edmond deep-sea vent field environment. Sed Geol 229: 193206.
  • Peng X , Chen S , Zhou H et al. (2011) Diversity of biogenic minerals in low temperature Si-rich deposits from a newly discovered hydrothermal field on the ultra-slow spreading Southwest Indian Ridge. J Geophys Res 116: G03030.
  • Phoenix VR , Konhauser KO & Ferris FG (2003) Experimental study of iron and silica immobilization by bacteria in mixed Fe-Si systems: implications for microbial silicification in hot springs. Can J Earth Sci 40: 16691678.
  • Rassa AC , McAllister SM , Safran SA et al. (2009) Zeta-proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii. Geomicrobiol J 26: 623638.
  • Reno NV (2006) Ridge 2000 Workshop Report: Lau Integrated Studies Site Focus Workshop.
  • Reysenbach A-L , Liu YT , Banta AB & Beveridge TJ (2006) Isolation of a ubiquitous obligate thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442: 444447.
  • Rodgers KA , Browneb PRL , Buddleb TF et al. (2004) Silica phases in sinters and residues from geothermal fields of New Zealand. Earth Sci Rev 66: 161.
  • Suzuki T , Hashimoto H , Matsumoto N et al. (2011) Nanometer-scale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks. Appl Environ Microbiol 77: 28772881.
  • Tamura K , Peterson D , Peterson N et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 27312739.
  • Templeton AS , Knowles EJ , Eldridge DL et al. (2009) A seafloor microbial biome hosted within incipient ferromanganese crusts. Nat Geosci 2: 872876.
  • Treusch AH , Leininger S , Kletzin A , Schuster SC , Klenk HP & Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7: 19851995.
  • Urrutia MM & Beveridge TJ (1993) Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. J Bacteriol 175: 19361945.
  • Yee N , Phoenix VR , Konhauser KO et al. (2003) The effects of cyanobacteria on silica precipitation at neutral pH: implication for bacterial silicification in geothermal hot springs. Chem Geol 199: 8390.
  • Zhou J , Bruns M & Tiedje J (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62: 316322.
  • Zhou HY , Li JT & Yang QH (2008) Microbiological oxidation of sulfide chimney promoted by warm diffusing flow in CDE hydrothermal field in Eastern Lau Spreading Center. AGU fall meeting.