SEARCH

SEARCH BY CITATION

References

  • Amend JP & Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25: 175243.
  • Amend JP, Rogers KL, Shock EL, Gurrieri S & Inguaggiato S (2003) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1: 3758.
  • Bodrossy L, Kovács KL, Mcdonald IR & Murrell JC (1999) A novel thermophilic methane-oxidising γ-Proteobacterium. FEMS Microbiol Lett 170: 335341.
  • Brock TD (1967) Micro-organisms adapted to high temperature. Nature 214: 882885.
  • Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D & Hedlund BP (2009) Microbiology and geochemistry of great boiling and Mud Hot Springs in the United States Great Basin. Extremophiles 13: 447459.
  • de la Torre JR, Walker CB, Ingalls AE, Konneke M & Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol, 10: 810818.
  • Dodsworth JA, Hungate BA & Hedlund BP (2011) Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea. Environ Microbiol 13: 23712386.
  • Dunfield PF, Yuryev A, Senin P et al. (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879882.
  • Hall JR, Mitchell KR, Jackson-Weaver O, Kooser AS, Cron BR, Crossey LJ & Takacs-Vesbach CD (2008) Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74: 49104922.
  • Hedlund BP, Mcdonald AI, Lam J, Dodsworth JA, Brown JR & Hungate BA (2011) Potential role of Thermus thermophilus and T. oshimai in high rates of nitrous oxide (N2O) production in approximately 80 degrees C hot springs in the US Great Basin. Geobiology 9: 471480.
  • Helgeson HC, Delany JM, Nesbitt HW & Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278: 1229.
  • Huber R, Huber H & Stetter KO (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24: 615623.
  • Inskeep WP & McDermott TR (2005) Geomicrobiology of acid-sulfate-chloride springs in Yellowstone National Park. Geothermal Biology and Geochemistry in Yellowstone National Park (Inskeep WP & McDermott TR, eds), pp. 143162. Montana State University Publications, Bozeman, MT, USA.
  • Inskeep WP, Ackerman GG, Taylor WP, Kozubal M, Korf S & Macur RE (2005) On the energetics of chemolithotrophy in nonequilibrium systems: case studies of geothermal springs in Yellowstone National Park. Geobiology 3: 297317.
  • Jiang H, Huang Q, Dong H, Wang P, Wang F, Li W & Zhang C (2010) RNA-based investigation of ammonia-oxidizing archaea in hot springs of Yunnan Province, China. Appl Environ Microbiol 76: 45384541.
  • Johnson JW, Oelkers EH & Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput Geosci 18: 899947.
  • Meyer-Dombard DR, Shock EL & Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3: 211227.
  • Nordstrom DK, Ball JW & McCleskey RB (2005) Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park. Geothermal Biology and Geochemistry in Yellowstone National Park (Inskeep WP & McDermott TR, eds), pp. 7394. Montana State University Publications, Bozeman, MT, USA.
  • Reigstad LJ, Richter A, Daims H, Urich T, Schwark L & Schleper C (2008) Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol Ecol 64: 167174.
  • Shock EL (2009) Minerals as energy sources for microorganisms. Econ Geol 104: 12351248.
  • Shock EL & Helgeson HC (1990) Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures – standard partial molal properties of organic-species. Geochim Cosmochim Acta 54: 915945.
  • Shock EL & Holland ME (2007) Quantitative habitability. Astrobiology, 7: 839851.
  • Shock EL, Helgeson HC & Sverjensky DA (1989) Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures – standard partial molal properties of inorganic neutral species. Geochim Cosmochim Acta 53: 21572183.
  • Shock EL, Sassani DC, Willis M & Sverjensky DA (1997) Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim Cosmochim Acta 61: 907950.
  • Shock EL, Holland M, Meyer-Dombard DR & Amend JP (2005) Geochemical sources of energy for microbial metabolism in hydrothermal ecosystems: Obsidian Pool, Yellowstone National Park. Geothermal Biology and Geochemistry in Yellowstone National Park (Inskeep WP & Mcdermott TR, eds), pp. 95109. Montana State University Publications, Bozeman, USA.
  • Shock EL, Holland M, Meyer-Dombard DR, Amend JP, Osburn GR & Fischer TP (2010) Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim Cosmochim Acta 74: 40054043.
  • Spear JR, Walker JJ, McCollom TM & Pace NR (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. P Natl Acad Sci USA 102: 25552560.
  • Tsubota J, Eshinimaev B, Khmelenina VN & Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55: 18771884.
  • Vick TJ, Dodsworth JA, Costa KC, Shock EL & Hedlund BP (2010) Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8: 140154.
  • Wolery TJ (1992) EQ3/6: Software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0). Lawrence Livermore National Laboratory Report UCRL-MA-110662 PT I., Livermore, CA.
  • Zhang CL, Ye Q, Huang Z et al. (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74: 64176426.