SEARCH

SEARCH BY CITATION

References

  • Adler J (1966) Chemotaxis in bacteria. Science 153: 708716.
  • Alexandre G, Greer-Phillips S & Zhulin IB (2004) Ecological role of energytaxis in microorganisms. FEMS Microbiol Rev 28: 113126.
  • Beijerinck MW (1893) Über Atmungsfiguren beweglicher Bakterien. Zentrabl Bakteriol Parasitenkd 14: 827845.
  • Berg HC & Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239: 500504.
  • Crank J (1975) The Mathematics of Diffusion. 2nd edn. Oxford University Press, London.
  • Cypionka H (1989) Characterization of sulfate transport in Desulfovibrio desulfuricans. Arch Microbiol 152: 237243.
  • Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54: 827848.
  • Cypionka H & Pfennig N (1986) Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 143: 366369.
  • Dilling W & Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71: 123128.
  • Engelmann TW (1881) Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und tierischer Organismen. Pflügers Arch Gesammte Physiol 25: 285292.
  • Eschemann A, Kühl M & Cypionka H (1999) Aerotaxis in Desulfovibrio. Env Microbiol 1: 489494.
  • Fenchel T (1994) Motility and chemosensory behaviour of the sulphur bacterium Thiovulum majus. Microbiology 140: 31093116.
  • Ford RM, Phillips BR, Quinn JA & Lauffenburger DA (1991) Measurement of bacterial random motility and chemotaxis coefficients: I. Stopped-flow diffusion chamber assay. Biotech Bioeng 37: 647660.
  • Frymier PD & Ford RM (1997) Analysis of bacterial swimming speed approaching a solid–liquid interface. AIChE J 43: 13411347.
  • Glud RN, Ramsing NB, Gundersen JK & Klimant I (1996) Planar optrodes, a new tool for fine scale measurements of two dimensional O2 distribution in benthic microbial communities. Mar Ecol Prog Ser 140: 217226.
  • Marschall C, Frenzel P & Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159: 168173.
  • Ramia M, Tullock DL & Phan-Thien N (1993) The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys J 65: 755778.
  • Rebbapragada A, Johnson MS, Harding GP, Zuccarelli AJ, Fletcher HM, Zhulin IB & Taylor BL (1997) The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc Natl Acad Sci USA 94: 1054110546.
  • Sass AM, Eschemann A, Kühl M, Thar R, Sass H & Cypionka H (2002) Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. Microbiol Ecol 40: 4754.
  • Stock JB & Surette MG (1996) Chemotaxis. Escherichia coli and Salmonella. 2nd edn (NeidhardtFC, eds), pp. 11031129. ASM Press, Washington, DC.
  • Taylor BL & Zhulin IB (1998) In search of higher energy: metabolism dependent behaviour in bacteria. Molecular Microbiology 28: 683690.
  • Taylor BL, Zhulin IB & Johnson MS (1999) Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol 53: 103128.
  • Thar R & Kühl M (2003) Bacteria are not too small for spatial sensing of chemical gradients: an experimental evidence. Proc Natl Acad Sci USA 100: 57485753.
  • Vigeant MAS & Ford RM (1997) Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope. Appl Environ Microbiol 63: 34743479.