SEARCH

SEARCH BY CITATION

Keywords:

  • adiponectin;
  • lipopolysaccharide;
  • osteoclast;
  • periodontopathic bacteria;
  • receptor activator of NF-κB ligand;
  • nitric oxide

Abstract

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

Previous epidemiologic studies have suggested that periodontal disease is closely related to obesity and glucose tolerance. As the level of adiponectin, an adipocyte-derived cytokine, in plasma had been reported to decrease in obese and type 2 diabetes patients, we explored the role of adiponectin in the etiology of periodontitis using the D clone of RAW264, a clone that exhibits highly efficient osteoclast formation, to determine whether adiponectin acts as a regulatory molecule in osteoclast formation stimulated by lipopolysaccharide of periodontopathic bacteria. We observed that adiponectin acted as a potent inhibitor of osteoclast formation stimulated by Toll-like receptor 4 (TLR4) ligand and receptor activator of NF-κB ligand (RANKL). Because NF-κB is an important transcription factor in osteoclast formation, we examined the effect of adiponectin on its transcriptional activity. A luciferase assay showed that adiponectin was able to inhibit the TLR4-mediated NF-κB activity in RAW264 cells. In addition, we observed that the cytokine was actually able to inhibit TLR4-mediated expression of the gene for inducible nitric oxide synthase and production of nitric oxide in the cells. These observations strongly suggest that adiponectin may function as a negative regulator of lipopolysaccharide/RANKL-mediated osteoclast formation in periodontal disease.


Introduction

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

Obesity is a risk factor of systemic diseases, and has been related to these diseases and to adipocytokines [adiponectin, leptin, tumor necrosis factor alpha (TNF-α), etc.], which are physiologically active products derived from adipocytes. Adiponectin is abundantly present in the plasma of healthy humans (Arita et al., 1999). By contrast, it has been shown that the level of adiponectin mRNA and that of its protein in plasma are decreased in obese and type 2 diabetes patients (Hotta et al., 2000; Halleux et al., 2001).

Many studies have recognized that periodontitis is more prevalent in diabetic patients and worsens with the progression of the disease (Page et al., 1997; Rees, 2000). Based on the results of an epidemiologic survey, we previously found a relationship between obesity and periodontitis (Saito et al., 1998). Dalla Vecchia et al. (2005) also showed that obesity was significantly associated with periodontitis in adult women who were nonsmokers. Moreover, our recent epidemiologic study (Saito et al., 2004) showed that periodontal disease could be a risk factor for type 2 diabetes, given that deep periodontal pockets were closely related to the past development of glucose intolerance in nondiabetics. Iwamoto et al. (2003) investigated the effect of antimicrobial periodontal treatment on adiponectin levels in patients with chronic periodontitis. Therefore, it was of interest to explore the etiology of periodontitis with respect to adiponectin.

Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis are periodontopathic bacteria that have largely been discussed with regard to the etiology of aggressive periodontitis (Zambon, 1985; Holt et al., 1988). Both species elaborate numerous components that may mediate adherence to mucosal surfaces, inhibit host defense mechanisms, and elicit gingival tissue destruction and alveolar bone resorption (Fives-Taylor et al., 1999; Holt et al., 1999). Lipopolysaccharide is considered to be a potent stimulator of bone loss in inflammatory diseases such as periodontitis and osteomyelitis and some types of arthritis (Ito et al., 1996; Nair et al., 1996; Abu-Amer et al., 1997; Ueda et al., 1998). In the present study, we chose A. actinomycetemcomitans lipopolysaccharide (Aa-LPS) as a potent inducer of osteoclast formation.

Oshima et al. (2005) recently reported that adiponectin inhibited the macrophage colony-stimulating factor (M-CSF)- and receptor activator of NF-κB ligand (RANKL)-induced differentiation of mouse bone marrow macrophages into osteoclasts. By contrast, we show here the inhibitory action of adiponectin for Aa-LPS/RANKL-induced osteoclast formation using the RAW264 D clone (D clone). In addition to showing that it was inhibitory in this regard, we also found that adiponectin was able to suppress Aa-LPS-stimulated NF-κB activity, gene expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide (NO) in murine macrophage-like cells (RAW264).

Materials and methods

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

Cells and reagents

Murine macrophage-like cell line RAW264 (RCB0535; RIKEN Cell Bank) was maintained in RPMI 1640 medium (Sigma-Aldrich Corp.) supplemented with 10% fetal bovine serum (FBS; Thermo Trace Ltd), 2 mM l-glutamine and 50 μg mL−1 gentamicin. In order to investigate whether adiponectin would be able to inhibit lipopolysaccharide/RANKL-induced ostoclastogenesis, we used RAW264 cell clone D (D clone), a clone having a high ability to form osteoclasts (Watanabe et al., 2004). Cultures were maintained at 37°C under 5% CO2.

Aa-LPS was extracted from lyophilized cells of A. actinomycetemcomitans strain Y4 by the hot phenol/water procedure, treated with nuclease and washed extensively with pyrogen-free water by ultracentrifugation. The lipopolysaccharide preparation was purified by chromatography on Sephadex G-200 (GE Healthcare Bio-Sciences Corp.) equilibrated with 10 mM Tris-HCl (pH 8.0) containing 0.2 M NaCl, 0.25% (w/v) deoxycholate, 1 mM EDTA and 0.02% (w/v) sodium azide (Yamaguchi et al., 1996). Lipopolysaccharide from Escherichia coli O111 : B4 (E-LPS) and tartrate-resistant acid phosphatase (TRAP) staining kit were purchased from Sigma-Aldrich Corp. Griess-Romijn nitrite reagent and sodium nitrite were purchased from Wako Pure Chemical Industries, Ltd. Soluble RANKL was obtained from PeproTech EC.

Culture conditions for forming osteoclast-like multinucleated cells from D clone

D clone cells were cultured in α-modified Eagle's medium containing 10 % FBS (6.8 × 103 cells in 150 μL per well for 96-well plates) for 3 days in the presence of 5−20 μg mL−1 adiponectin, 20 ng mL−1 soluble RANKL, and 1 μg mL−1 E-LPS or 1 μg mL−1 Aa-LPS.

Purification of recombinant protein

Glutathione S-transferase (GST) fusion vector [pGEX-6P-1 (GE Healthcare Bio-Sciences)] containing the globular domain of mouse 30-kDa adipocyte complement-related protein (gACRP30) was provided by Dr I. Shimomura (Osaka University, Osaka, Japan). Recombinant globular adiponectin (gAd) was prepared as described previously (Maeda et al., 2002). Briefly, GST-gACRP30 protein was produced in E. coli strain BL21 and purified using glutathione Sepharose 4B (GE Healthcare Bio-Sciences). GST was cleaved from GST-gACRP30 protein by PreScission Protease (GE Healthcare Bio-Sciences). The isolated protein was applied to an Affi-Prep polymyxin column (Bio-Rad Laboratories) to remove endotoxin contamination, as described previously (Yamaguchi et al., 1998). According to the cytotoxic assay using a propidium iodide staining and a flow cytometer, gAd did not exhibit the nonspecific toxic effects on RAW264 cells (data not shown).

NF-κB luciferase assay

RAW264 cells (2 × 106 per plate) were incubated with a mixture of pTKκB2Luc (reporter gene, 8 ng), pRL-TK (internal control, 2 ng) and PolyFect transfection reagent (80 μL; QIAGEN K.K.) for 24 h in 10-cm plastic plates with RPMI 1640 medium containing 10% FBS. These cells were harvested, placed in 24-well plastic plates, preincubated with various amounts of gAd, and then incubated for an additional 6 h with or without an lipopolysaccharide stimulant. Thereafter, the treated cells were lysed with Passive Lysis Buffer (Promega). The Dual-Luciferase Reporter Assay System (Promega) was used to quantify the expression of firefly luciferase and Renilla luciferase. Firefly luciferase activity was normalized to that for Renilla and presented as values relative to the control.

Real-time quantitative PCR

Total RNA (5 μg) from RAW264 cells was isolated using an RNeasy Plus Mini Kit (QIAGEN K.K.). The RNA samples were reverse transcribed to cDNA by use of Ready-To-Go You-Prime First-Strand Beads (GE Healthcare Bio-Sciences). β-Actin (internal control) and iNOS mRNA levels were determined by conducting quantitative real-time PCR assays. The probe consisted of an oligonucleotide coupled with a reporter dye (6-carboxyfluorescein; 6FAM) at the 5′ end of the probe and a quencher dye (6-carboxy-tetramethylrhodamine; TAMRA) at an internal thymidine. Following cleavage of the probe, reporter and quencher dyes become separated, resulting in an increased fluorescence of the reporter. Amplification and detection were performed with an ABI PRISM 7700 Sequence Detector (Perkin-Elmer Japan Co., Ltd., Applied Biosystems Division) operated according to the following cycle profile: 95°C for 10 min, and 40 cycles of 95°C for 15 s and 60°C for 1 min. PCR primers were designed from recently published sequences (Hinz et al., 2001) and were as follows: iNOS forward primer, 5′-TGCCCCTTCAATGGTTGGTA-3′; iNOS reverse primer, 5′-ACTGGAGGGACCAGCCAAAT-3′; iNOS TaqMan probe, 5′-(6FAM)CGCTACAACA(TAMRA)TCCTGGAGGAAGTGG-3′; β-actin forward primer, 5′-TCACCCA CACTGTGCCCATCTACGA-3′; β-actin reverse primer, 5′-GGATGCCACAGGATTCCATACCCA-3′; β-actin TaqMan probe 5′-(6FAM)TATGCTC(TAMRA)TCCCTCACGCCAT CCTGCGT-3′. Quantification of mRNA was performed by determining the threshold cycle as described previously (Hinz et al., 2001). iNOS mRNA levels were normalized to those of the housekeeping gene β-actin.

NO determination

RAW264 cells (5 × 105) were preincubated with the desired amounts of gAd for 6 h in RPMI 1640 containing 5% FBS. The cells were then washed with phosphate-buffered saline (pH 7.3) and exposed to lipopolysaccharide for 24 h. The levels of NO in the culture supernatants were assessed by performing the Griess reaction (Sosroseno et al., 2004). Each culture supernatant (100 μL) was mixed with an equal volume of the Griess–Romijn nitrite reagent and read in a microplate reader (Benchmark, Bio-Rad Laboratories) at 540 nm. The nitrite concentration was calculated from a standard curve prepared with sodium nitrite.

Statistical analysis

Student's t-test was used to determine the statistical significance of differences between results obtained for the untreated control group vs. those from gAd-pretreated groups. For the real-time quantitative PCR assay, comparisons between groups were performed with a nonparametric statistical test (Wilcoxon signed-ranks test) using the absolute values from six independent experiments.

Results

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

gAd inhibition of Aa-LPS/RANKL-induced osteoclast formation by RAW264 D clone

We previously demonstrated that adiponectin inhibits Toll-like receptor (TLR) family-induced signaling (Yamaguchi et al., 2005). In the present study, to study further the involvement of adiponectin in the initiation and progression of periodontitis, we directly investigated whether adiponectin could act as a potent inhibitor of osteoclast formation stimulated by TLR4 signaling. We previously isolated this as a clone that showed a high efficiency in forming osteoclasts from RAW264 cells (Watanabe et al., 2004). Lipopolysaccharide stimulated TRAP-positive osteoclast formation in D clone cells in a dose-dependent manner. The maximal number of osteoclasts was observed at 1 μg mL−1 of either Aa-LPS or E-LPS (data not shown). We then examined the effect of gAd on the Aa-LPS/RANKL-induced formation of TRAP-positive multinucleated cells (MNCs). As shown in Fig. 1, gAd (2.5−20 μg mL−1) strongly inhibited Aa-LPS- and RANKL-induced formation of osteoclast-like MNCs from the D clone cells. Lower concentrations (<2.5 μg mL−1) of gAd did not significantly inhibit Aa-LPS/RANKL-induced osteoclast formation (data not shown). By contrast, the significant inhibitory effect of heat-inactivated (100°C for 10 min) gAd (ΔI gAd) on Aa-LPS/RANKL-induced osteoclastogenesis was not observed (Fig. 1c).

image

Figure 1.  Morphological demonstration of gAd inhibition of Aa-LPS- and RANKL-induced osteoclast formation from the RAW264 D clone. Cells of the D clone cultured in 96-well plates efficiently differentiated into TRAP-positive MNCs at 1 μg mL−1 Aa-LPS and 20 ng mL−1 RANKL (a). By contrast, gAd (20 μg mL−1) strongly inhibited the formation of TRAP-positive MNCs under these conditions (b). The TRAP-positive MNCs are indicated by arrows. Scale bar=200 μm. (c) Suppressive effect of gAd on Aa-LPS/RANKL-induced osteoclast formation by D clone cells. Cells were cultured in 96-well culture plates to determine the formation of osteoclast-like MNCs in the presence of 1 μg mL−1 Aa-LPS, 20 ng mL−1 RANKL and various concentrations of gAd. gAd markedly inhibited the formation of TRAP-positive MNCs in a dose-dependent manner. ΔI gAd did not inhibit Aa-LPS/RANKL-induced osteoclastogenesis. Data represent typical results of three independent experiments. **P<0.01.

Download figure to PowerPoint

gAd inhibition of Aa-LPS-induced NF-κB activation

Given that, as described above, adiponectin was found to be a potent negative regulator of lipopolysaccharide/RANKL-mediated osteoclast formation, we next measured Aa-LPS-induced NF-κB activity in RAW264 macrophages using a luciferase assay. We included E-LPS as a positive control for this system. The cells were pretreated with gAd (2.5−20 μg mL−1) for 6 h before the addition of Aa-LPS (0.3 μg mL−1) or E-LPS (0.3 μg mL−1) and were then incubated for 6 h. We observed that gAd markedly suppressed Aa-LPS-induced NF-κB activity as well as E-LPS-induced NF-κB activity (Fig. 2). Pretreatment with ΔI gAd did not affect LPS/RANKL-induced NF-κB activation (Fig. 2). The gAd treatment alone had little effect on NF-κB activation (data not shown).

image

Figure 2.  Attenuation of NF-κB-induced reporter gene activity by gAd in RAW264 cells. The cells were pretreated with gAd (2.5−20 μg mL−1) for 6 h before the addition of Aa-LPS (0.3 μg mL−1, closed bars) or E-LPS (0.3 μg mL−1, cross-hatched bars) and then incubated for 6 h. Thereafter, the cells were harvested and luciferase activities were analysed using a Dual-Luciferase Reporter Assay System. Activity was expressed relative to the untreated control. Values represent means±SD of triplicate cultures. The experiments were performed three times, and similar results were obtained in each experiment. *P<0.05 vs. basal Aa-LPS-induced NF-κB activity; §§P<0.01 vs. basal E- LPS-induced NF-κB activity.

Download figure to PowerPoint

gAd inhibition of Aa-LPS-induced iNOS mRNA expression and NO production

Finally, we examined whether gAd could inhibit lipopolysaccharide-induced iNOS mRNA expression and NO production in RAW264 cells. Our real-time PCR assay using TaqMan probes showed that gAd significantly attenuated LPS-induced iNOS mRNA expression (Fig. 3). Furthermore, gAd markedly inhibited LPS-induced NO production in RAW264 cells (Fig. 4). When the cells were pretreated with ΔI gAd, no changes in LPS/RANKL-induced iNOS mRNA expression or NO production were observed (Figs 3 and 4). These results suggest that adiponectin would also be able to exert an anti-inflammatory effect against A. actinomycetemcomitans infection in periodontal sites.

image

Figure 3.  Effect of gAd on LPS-induced iNOS gene expression in RAW264 cells. The cells were pretreated with gAd (2.5−20 μg mL−1) for 6 h before the addition of Aa-LPS (0.3 μg mL−1, closed bars) or E-LPS (0.3 μg mL−1, cross-hatched bars) and were then incubated for 18 h. iNOS mRNA levels are presented relative to the gAd-untreated control. Results are means±SE of six independent experiments. *P<0.05 vs. basal Aa-LPS-induced iNOS gene expression level; §P<0.05 vs. basal E-LPS-induced iNOS gene expression level.

Download figure to PowerPoint

image

Figure 4.  Effect of gAd on the level of lipolysaccharide (LPS)-induced NO in supernatant medium from RAW264 cell cultures. The cells were pretreated with gAd (2.5−20 μg mL−1) for 6 h before the addition of Aa-LPS (0.3 μg mL−1, closed bars) or E-LPS (0.3 μg mL−1, cross-hatched bars) and subsequently incubated for 24 h. Supernatants were then removed for determination of NO level. Values are means±SD for triplicate cultures. The NO level of the supernatant from untreated cells was 9.8±1.5 μM. **P<0.01 vs. basal Aa-LPS-induced NO level; §§P<0.01 vs. basal E-LPS-induced NO level (Student's t-test). Similar results were obtained from three separate experiments.

Download figure to PowerPoint

Discussion

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

In this report, we provide the first evidence that adiponectin specifically inhibited lipopolysaccharide/RANKL-mediated osteoclastogenesis by D clone cells, suggesting that adiponectin manipulation could be therapeutically useful for patients with periodontal disease. We previously reported a positive relationship between obesity and periodontitis, based on the results of an epidemiologic study (Saito et al., 1998). The relative risk of periodontitis in a group with a body-mass index (BMI) of over 20 was much higher than that in a group with a BMI of <20. Among the many adipocyte-derived endocrine factors, we noted that the level of the adipocyte-derived plasma protein adiponectin was lower in obese subjects than in nonobese subjects (Arita et al., 1999). If adiponectin could reduce inflammation, this natural plasma component might act as an anti-inflammatory factor to prevent periodontitis. However, the actual role of adiponectin in periodontitis has not yet been demonstrated.

We previously showed that adiponectin functions as a negative regulator of lipopolysaccharide-induced NF-κB activation in murine macrophage-like cells (Yamaguchi et al., 2005). NO has been shown to contribute to immunologic responses given that NO produced by activated macrophages is involved in their tumoricidal and bactericidal actions (Stuehr & Nathan, 1989; Nathan & Hibbs, 1991). There seem to be direct and indirect pathways for macrophage activation by lipopolysaccharide: one is the MyD88-IRAK-TRAF6-TAK1-IKKB-mediated phosphorylation of IκB and TRAF6-mediated C-Jun N-terminal kinase (JNK), p38 activation; the other is an indirect activation of the Janus Kinase (JAK)/STAT pathway (Crespo et al., 2000; Toshchakov et al., 2002). The promoter of iNOS has been shown to possess STAT1 and NF-κB binding sites, and both seem to be required for full activation of this promoter in macrophages (Ganster et al., 2001). Furthermore, NO production from STAT1−/− and MyD88−/− macrophages was decreased compared with that from wild-type macrophages (Kawai et al., 1999; Ohmori & Hamilton, 2001). We have shown here that adiponectin inhibited lipopolysaccharide-mediated iNOS mRNA expression and NO production in macrophage-like cells (Figs 3 and 4). However, we have not yet identified the target molecules of adiponectin in TLR signaling pathways.

NF-κB plays an essential role in osteoclast differentiation (Franzoso et al., 1997; Iotsova et al., 1997). Several researchers have shown that NO can stimulate NF-κB-DNA binding in T cells (Lander et al., 1995), endothelial cells (Umansky et al., 1998) and macrophages (von Knethen et al., 1999). However, NO has also been suggested to be involved in the regulation of osteoclast activity. NO potentiates cytokine-induced bone resorption (Ralston et al., 1995), and high levels of NO can also inhibit bone formation (Damoulis & Hauschka, 1994; Ralston et al., 1994, 1995; Mancini et al., 2000). Gyurko et al. (2005) recently demonstrated that iNOS promotes bone resorption during bone development as well as after a bacterial infection. In our present study, adiponectin strongly blocked Aa-LPS/RANKL-induced osteoclast formation (Fig. 1) and significantly attenuated Aa-LPS-induced iNOS mRNA expression and NO production (Figs 3 and 4). Aa-LPS is known to induce murine calvarial bone resorption (Ishihara et al., 1991). Our preliminary data showed that Aa-LPS itself induced osteoclast formation by the D clone cells, although the extent of osteoclastogenesis was weaker than that induced by Aa-LPS/RANKL (data not shown). These data suggest that Aa-LPS and RANKL may synergistically work on osteoclastogenesis. Moreover, it is possible that Aa-LPS induces TNF-α production and that this cytokine may work together with RANKL to induce osteoclast formation. RANKL itself was also shown to induce the formation of MNCs, but not that of TRAP-positive cells by the D clone cells. Adiponectin was able to inhibit RANKL-induced MNCs as well (data not shown).

In conclusion, the results presented here indicate that adiponectin suppressed lipopolysaccharide/RANKL-mediated osteoclastogenesis. Our data suggest a novel function of adiponectin as a potent negative regulator of the initiation and progression of periodontitis. However, it still remains to elucidate the precise inhibitory mechanism of adiponectin in RANKL-induced osteoclast formation.

Acknowledgements

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

We thank Drs I. Shimomura and N. Maeda for generously providing mouse globular adiponectin cDNA. This study was supported by a grant (No. 17592184 to NY) from the program Grants-in-Aid for Scientific Research (C) of the Ministry of Education, Science, Sports, and Culture of Japan.

References

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References
  • Abu-Amer Y, Ross FP, Edwards J & Teitelbaum SL (1997) Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest 100: 15571565.
  • Arita Y, Kihara S, Ouchi N et al. (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257: 7983.
  • Crespo A, Filla MB, Russell SW & Murphy WJ (2000) Indirect induction of suppressor of cytokine signalling-1 in macrophages stimulated with bacterial lipopolysaccharide: partial role of autocrine/paracrine interferon-alpha/beta. Biochem J 349: 99104.
  • Dalla Vecchia CF, Susin C, Rosing CK, Oppermann RV & Albandar JM (2005) Overweight and obesity as risk indicators for periodontitis in adults. J Periodontol 76: 17211728.
  • Damoulis PD & Hauschka PV (1994) Cytokines induce nitric oxide production in mouse osteoblasts. Biochem Biophys Res Commun 201: 924931.
  • Fives-Taylor PM, Meyer DH, Mintz KP & Brissette C (1999) Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol 2000 20: 136167.
  • Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF & Siebenlist U (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11: 34823496.
  • Ganster RW, Taylor BS, Shao L & Geller DA (2001) Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci USA 98: 86388643.
  • Gyurko R, Shoji H, Battaglino RA, Boustany G, Gibson FC III, Genco CA, Stashenko P & Van Dyke TE (2005) Inducible nitric oxide synthase mediates bone development and P. gingivalis-induced alveolar bone loss. Bone 36: 472479.
  • Halleux CM, Takahashi M, Delporte ML, Detry R, Funahashi T, Matsuzawa Y & Brichard SM (2001) Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem Biophys Res Commun 288: 11021107.
  • Hinz B, Brune K, Rau T & Pahl A (2001) Flurbiprofen enantiomers inhibit inducible nitric oxide synthase expression in RAW264.7 macrophages. Pharm Res 18: 151156.
  • Holt SC, Ebersole J, Felton J, Brunsvold M & Kornman KS (1988) Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science 239: 5557.
  • Holt SC, Kesavalu L, Walker S & Genco CA (1999) Virulence factors of Porphyromonas gingivalis. Periodontol 2000 20: 168238.
  • Hotta K, Funahashi T, Arita Y et al. (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20: 15951599.
  • Iotsova V, Caamano J, Loy J, Yang Y, Lewin A & Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3: 12851289.
  • Ishihara Y, Nishihara T, Maki E, Noguchi T & Koga T (1991) Role of interleukin-1 and prostaglandin in in vitro bone resorption induced by Actinobacillus actinomycetemcomitans lipopolysaccharide. J Periodontal Res 26: 155160.
  • Ito HO, Shuto T, Takada H, Koga T, Aida Y & Hirata M (1996) Lipopolysaccharides from Porphyromonas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans promote osteoclastic differentiation in vitro. Arch Oral Biol 41: 439444.
  • Iwamoto Y, Nishimura F, Soga Y, Takeuchi K, Kurihara M, Takashiba S & Murayama Y (2003) Antimicrobial periodontal treatment decreases serum c-reactive protein, tumor necrosis factor-alpha, but not adiponectin levels in patients with chronic periodontitis. J Periodontol 74: 12311236.
  • Kawai T, Adachi O, Ogawa T, Takeda K & Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115122.
  • Lander HM, Ogiste JS, Pearce SF, Levi R & Novogrodsky A (1995) Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J Biol Chem 270: 70177020.
  • Maeda N, Shimomura I, Kishida K et al. (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8: 731737.
  • Mancini L, Moradi-Bidhendi N, Becherini L, Martineti V & MacIntyre I (2000) The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Commun 274: 477481.
  • Nair SP, Meghji S, Wilson M, Reddi K, White P & Henderson B (1996) Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun 64: 23712380.
  • Nathan CF & Hibbs JB Jr (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3: 6570.
  • Ohmori Y & Hamilton TA (2001) Requirement for STAT1 in LPS-induced gene expression in macrophages. J Leukoc Biol 69: 598604.
  • Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H & Shimomura I (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331: 520526.
  • Page RC, Offenbacher S, Schroeder HE, Seymour GJ & Kornman KS (1997) Advances in the pathogenesis of periodontitis: summary of developments, clinical implications and future directions. Periodontol 2000 14: 216248.
  • Ralston SH, Todd D, Helfrich M, Benjamin N & Grabowski PS (1994) Human osteoblast-like cells produce nitric oxide and express inducible nitric oxide synthase. Endocrinology 135: 330336.
  • Ralston SH, Ho LP, Helfrich MH, Grabowski PS, Johnston PW & Benjamin N (1995) Nitric oxide: a cytokine-induced regulator of bone resorption. J Bone Miner Res 10: 10401049.
  • Rees TD (2000) Periodontal management of the patient with diabetes mellitus. Periodontol 2000 23: 6372.
  • Saito T, Shimazaki Y & Sakamoto M (1998) Obesity and periodontitis. N Engl J Med 339: 482483.
  • Saito T, Shimazaki Y, Kiyohara Y, Kato I, Kubo M, Iida M & Koga T (2004) The severity of periodontal disease is associated with the development of glucose intolerance in non-diabetics: the Hisayama study. J Dent Res 83: 485490.
  • Sosroseno W, Herminajeng E, Bird PS & Seymour GJ (2004) l-arginine-dependent nitric oxide production of a murine macrophage-like RAW264.7 cell line stimulated with Porphyromonas gingivalis lipopolysaccharide. Oral Microbiol Immunol 19: 6570.
  • Stuehr DJ & Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169: 15431555.
  • Toshchakov V, Jones BW, Perera PY et al. (2002) TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 3: 392398.
  • Ueda N, Koide M, Ohguchi M, Ishihara Y, Noguchi T, Okahashi N & Nishihara T (1998) Involvement of prostaglandin E2 and interleukin-1 alpha in the differentiation and survival of osteoclasts induced by lipopolysaccharide from Actinobacillus actinomycetemcomitans Y4. J Periodontal Res 33: 509516.
  • Umansky V, Hehner SP, Dumont A, Hofmann TG, Schirrmacher V, Droge W & Schmitz ML (1998) Co-stimulatory effect of nitric oxide on endothelial NF-kappaB implies a physiological self-amplifying mechanism. Eur J Immunol 28: 22762282.
  • Von Knethen A, Callsen D & Brune B (1999) NF-kappaB and AP-1 activation by nitric oxide attenuated apoptotic cell death in RAW264.7 macrophages. Mol Biol Cell 10: 361372.
  • Watanabe T, Kukita T, Kukita A, Wada N, Toh K, Nagata K, Nomiyama H & Iijima T (2004) Direct stimulation of osteoclastogenesis by MIP-1alpha: evidence obtained from studies using RAW264 cell clone highly responsive to RANKL. J Endocrinol 180: 193201.
  • Yamaguchi N, Yamashita Y, Ikeda D & Koga T (1996) Actinobacillus actinomycetemcomitans serotype b-specific polysaccharide antigen stimulates production of chemotactic factors and inflammatory cytokines by human monocytes. Infect Immun 64: 25632570.
  • Yamaguchi N, Tsuda H, Yamashita Y & Koga T (1998) Binding of the capsule-like serotype-specific polysaccharide antigen and the lipopolysaccharide from Actinobacillus actinomycetemcomitans to human complement-derived opsonins. Oral Microbiol Immunol 13: 348354.
  • Yamaguchi N, Martinez Argueta JG, Masuhiro Y, Kagishita M, Nonaka K, Saito T, Hanazawa S & Yamashita Y (2005) Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett 579: 68216826.
  • Zambon JJ (1985) Actinobacillus actinomycetemcomitans in human periodontal disease. J Clin Periodontol 12: 120.