SEARCH

SEARCH BY CITATION

References

  • Bird RB, Stewart WE & Lightfoot EN (1960) Transport Phenomena, Wiley International Edition. pp. 495516. John Wiley and Sons Inc., New York.
  • Bryers JD & Drummond F (1998) Local macromolecule diffusion coefficients in structurally non-uniform bacterial biofilms using fluorescence recovery after photobleaching (FRAP). Biotechnol Bioeng 60: 462473.
  • Burdman S, Jurkevitch E, Soria-Diaz ME, Serrano AM & Okon Y (2000) Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol Lett 189: 259264.
  • Cerca N, Martins S, Cerca F, Jefferson KK, Pier GB, Oliveira R & Azeredo J (2005) Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. J Antimicrob Chemother 56: 331336.
  • Ceri H, Olson ME, Stremick C, Read RR, Morck D & Buret A (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37: 17711776.
  • Chambless JD, Hunt SM & Stewart PS (2006) A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antibiotics. Appl Environ Microbiol 73: 20052013.
  • Chan W (1998) The role of viscosity in Pseudomonas and Candida phenotype expression. Ph.D. thesis, University of Calgary, Calgary.
  • Clinical and Laboratory Standards Institute (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard–7th edition. NCCLS document M7-A7. Clinical and Laboratory Standards Institute, Villanova, PA.
  • Cogan NG, Cortez R & Fauci L (2005) Modeling physiological resistance in bacterial biofilms. Bull Math Biology 67: 831853.
  • Cramton SE, Gerke C, Schnell NF, Nichols WW & Götz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67: 54275433.
  • De Beer D & Stoodley P (1995) Relation between the structure of an aerobic biofilm and mass transport phenomena. Water Sci Tech 32: 1118.
  • De Beer D, Stoodley P & Lewandowski Z (1997) Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol Bioeng 53: 151158.
  • Donlan RM (2000) Role of biofilms in antimicrobial resistance. ASAIO J 46: S47S52.
  • Donlan RM & Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiol Rev 15: 167193.
  • Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5: 12131219.
  • Dunne WM, Mason EO & Kaplan SL (1993) Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 37: 25222526.
  • Fitzpatrick F, Humphreys H & O'Gara JP (2005) The genetics of staphylococcal biofilm formation–will a greater understanding of pathogenesis lead to better management of device-related infection? Clin Microbiol Infect 11: 967973.
  • Frank BP & Belfort G (2003) Polysaccharides and sticky membrane surfaces: critical ionic effect. J Membr Sci 212: 205212.
  • Fux CA, Costerton JW, Stewart PS & Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13: 3440.
  • Gilbert P, Jones MV, Allison DG, Heys S, Maira T & Wood P (1998) The use of poloxamer hydrogels for the assessment of biofilm susceptibility towards biocide treatments. J Appl Microbiol 85: 985990.
  • Gilbert P, Allison DG & McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? Symp Ser Soc Appl Microbiol (31): 98S110S.
  • Hall-Stoodley L, Costerton JW & Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2: 95108.
  • Harrison JJ, Ceri H, Roper NJ, Badry EA, Sproule KM & Turner RJ (2005a) Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151: 31813195.
  • Harrison JJ, Turner RJ, Marques LR & Ceri H (2005b) Biofilms: a new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. American Scientist 93: 508515.
  • Jefferson KK, Goldmann DA & Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration though Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49: 24672473.
  • Jouenne T, Tresse O & Junter GA (1994) Agar-entrapped bacteria as an in vitro model of biofilms and their susceptibility to antibiotics. FEMS Microbiol Lett 119: 237242.
  • Keren I, Kaldalu N, Spoering A, Wang Y & Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230: 1318.
  • Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Moscow) 70: 267274.
  • Mah TF & O'Toole G (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9: 3439.
  • Marcotte L, Therien-Aubin H, Sandi C, Barbeau J & Lafleur M (2004) Solute size effects on the diffusion in biofilms of Streptococcus mutans. Biofouling 20: 189201.
  • Mayer C, Moritz R, Kirschner C, Borchard W, Maibbaum R, Wingender J & Flemming HC (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biolog Macromol 26: 316.
  • Pawlowski KS, Wawro D & Roland PS (2005) Bacterial biofilm formation on a human cochlear implant. Otol Neurotol 26: 972975.
  • Perry PA, Fitzgerald MA & Gilbert RG (2006) Fluorescence recovery after photobleaching as a probe of diffusion in starch systems. Biomacromolecules 7: 521530.
  • Rani SA, Pitts B & Stewart PS (2005) Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy. Antimicrob Agents Chemother 49: 728732.
  • Resch A, Rosenstein R, Nerz C & Götz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environm Microbiol 71: 26632676.
  • Roberts ME & Stewart PS (2005) Modeling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151: 7580.
  • Rupp CJ, Fux CA & Stoodley P (2005) Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol 71: 21752178.
  • Sadovskaya I, Vinogradov E, Flahaut S, Kogan G & Jabbouri S (2005) Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun 73: 30073017.
  • Shaw T, Winston M, Rupp CJ, Klapper I & Stoodley P (2004) Commonality of elastic relaxation times in biofilms. Phys Rev Lett 93: 14.
  • Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40: 25172522.
  • Stoodley P, De Beer D & Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60: 27112716.
  • Strathmann M, Griebe T & Flemming HC (2000) Artificial biofilm model–a useful tool for biofilm research. Appl Microbiol Biotechnol 54: 231237.
  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 39.
  • Walters MC III, Roe F, Bugnicourt A, Franklin MJ & Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47: 317323.
  • Whitchurch CB, Tolker-Nielsen T, Ragas PC & Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295: 1487.
  • Wirtanen G, Salo S, Allison DG, Mattila-Sandholm T & Gilbert P (1998) Performance evaluation of disinfectant formulations using poloxamer-hydrogel biofilm-constructs. J Appl Microbiol 85: 965971.