SEARCH

SEARCH BY CITATION

References

  • Abdallah AM, Bestebroer J, Savage NDL et al. (2011) Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. J Immunol 187: 47444753.
  • Alemán M, de la Barrera SS, Schierloh PL, Yokobori N, Baldini M, Musella RM, Abbate E & Sasiain MC (2007) Spontaneous or Mycobacterium tuberculosis-induced apoptotic neutrophils exert opposite effects on the dendritic cell-mediated immune response. Eur J Immunol 37: 15241537.
  • Arcila ML, Sánchez MD, Ortiz B, Barrera LF, García LF & Rojas M (2007) Activation of apoptosis, but not necrosis, during Mycobacterium tuberculosis infection correlated with decreased bacterial growth: role of TNF-alpha, IL-10, caspases and phospholipase A2. Cell Immunol 249: 8093.
  • Balcewicz-Sablinska MK, Keane J, Kornfeld H & Remold HG (1998) Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol 161: 26362641.
  • Briken V & Miller JL (2008) Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. Future Microbiol 3: 415422.
  • Briken V, Porcelli SA, Besra GS & Kremer L (2004) Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 53: 391403.
  • Brites D & Gagneux S (2011) Old and new selective pressures on Mycobacterium tuberculosis. Infect Genet Evol 12: 678685.
  • Chen M, Gan H & Remold HG (2006) A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 176: 3707.
  • Ciaramella A, Cavone A, Santucci MB et al. (2004) Induction of apoptosis and release of interleukin-1 beta by cell wall-associated 19-kDa lipoprotein during the course of mycobacterial infection. J Infect Dis 190: 11671176.
  • Cohen T & Murray M (2004) Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat Med 10: 11171121.
  • Dao DN, Kremer L, Guérardel Y, Molano A, Jacobs WR, Porcelli SA & Briken V (2004) Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect Immun 72: 20672074.
  • Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar SM & Remold HG (2009) Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10: 899906.
  • van Embden JD, Cave MD, Crawford JT et al. (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31: 406409.
  • Geffner L, Yokobori N, Basile J et al. (2009) Patients with multidrug resistant tuberculosis display impaired Th1 response and enhanced regulatory T cells levels in response to M and Ra outbreak multidrug resistant Mycobacterium tuberculosis strains. Infect Immun 77: 50255034.
  • Guenin-Macé L, Siméone R & Demangel C (2009) Lipids of pathogenic Mycobacteria: contributions to virulence and host immune suppression. Transbound Emerg Dis 56: 255268.
  • Hershberg R, Lipatov M, Small PM et al. (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6: e311.
  • Hinchey J, Lee S, Jeon BY et al. (2007) Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117: 22792288.
  • Kaku T, Kawamura I, Uchiyama R, Kurenuma T & Mitsuyama M (2007) RD1 region in mycobacterial genome is involved in the induction of necrosis in infected RAW264 cells via mitochondrial membrane damage and ATP depletion. FEMS Microbiol Lett 274: 189195.
  • Kamerbeek J, Schouls L, Kolk A et al. (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35: 907914.
  • Keane J, Remold HG & Kornfeld H (2000) Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 164: 20162020.
  • Lee J, Remold HG, Ieong MH & Kornfeld H (2006) Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J Immunol 176: 42674274.
  • Lee J, Hartman M & Kornfeld H (2009) Macrophage apoptosis in tuberculosis. Yonsei Med J 50: 111.
  • Liu H, Ma Y, Pagliari LJ, Perlman H, Yu C, Lin A & Pope RM (2004) TNF-alpha-induced apoptosis of macrophages following inhibition of NF-kappa B: a central role for disruption of mitochondria. J Immunol 172: 19071915.
  • Loeuillet C, Martinon F, Perez C, Munoz M, Thome M & Meylan PR (2006) Mycobacterium tuberculosis subverts innate immunity to evade specific effectors. J Immunol 177: 62456255.
  • López B, Aguilar D, Orozco H et al. (2003) A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 133: 3037.
  • López B, Latini C, Ambroggi M, Gravina E, Ritacco V & Barrera L (2008) Two M. tuberculosis lineages are overrepresented among new cases of MDR and XDR TB in Argentina. Int J Tuberc Lung Dis 12: S173.
  • Manca C, Tsenova L, Barry CE, Bergtold A, Freeman S, Haslett PA, Musser JM, Freedman VH & Kaplan G (1999) Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J Immunol 162: 67406746.
  • Molloy A, Laochumroonvorapong P & Kaplan G (1994) Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guérin. J Exp Med 180: 14991509.
  • Nuzzo I, Galdiero M, Bentivoglio C, Galdiero R & C (2002) Apoptosis modulation by mycolic acid, tuberculostearic acid and trehalose 6,6′-dimycolate. J Infect 44: 229235.
  • O'Sullivan MP, O'Leary SM, Kelly DM & Keane J (2007) A caspase-independent pathway mediates macrophage cell death in response to Mycobacterium tuberculosis infection. Infect Immun 75: 19841993.
  • Palmero D, Ritacco V, Ambroggi M et al. (2003) Multidrug-resistant tuberculosis in HIV-negative patients, Buenos Aires, Argentina. Emerg Infect Dis 9: 965969.
  • Parwati I, van Crevel R & van Soolingen D (2010) Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis 10: 103111.
  • Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, Kaplan G & Barry CE (2004) A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431: 8487.
  • Ritacco V, Di Lonardo M, Reniero A, Ambroggi M, Barrera L, Dambrosi A, López B, Isola N & de Kantor IN (1997) Nosocomial spread of human immunodeficiency virus-related multidrug-resistant tuberculosis in Buenos Aires. J Infect Dis 176: 637642.
  • Ritacco V, Iglesias MJ, Ferrazoli L et al. (2012) Conspicuous multidrug-resistant Mycobacterium tuberculosis cluster strains do not trespass country borders in Latin America and Spain. Infect Genet Evol 12: 711717.
  • Rojas M, Olivier M, Gros P, Barrera LF & García LF (1999) TNF-alpha and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages. J Immunol 162: 61226131.
  • Rojas M, García LF, Nigou J, Puzo G & Olivier M (2000) Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca+2-dependent cell signaling. J Infect Dis 182: 240251.
  • Sly LM, Hingley-Wilson SM, Reiner NE & McMaster WR (2003) Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J Immunol 170: 430437.
  • Theus SA, Cave MD & Eisenach KD (2005) Intracellular macrophage growth rates and cytokine profiles of Mycobacterium tuberculosis strains with different transmission dynamics. J Infect Dis 191: 453460.
  • Theus SA, Cave MD, Eisenach KD, Walrath J, Lee H, Mackay W, Whalen C & Silver RF (2006) Differences in the growth of paired Ugandan isolates of Mycobacterium tuberculosis within human mononuclear phagocytes correlate with epidemiological evidence of strain virulence. Infect Immun 74: 68656876.
  • Torrelles JB, Knaup R, Kolareth A et al. (2008) Identification of Mycobacterium tuberculosis clinical isolates with altered phagocytosis by human macrophages due to a truncated lipoarabinomannan. J Biol Chem 283: 3141731428.
  • Torrelles JB, DesJardin LE, MacNeil J et al. (2009) Inactivation of Mycobacterium tuberculosis mannosyltransferase pimB reduces the cell wall lipoarabinomannan and lipomannan content and increases the rate of bacterial-induced human macrophage cell death. Glycobiology 19: 743755.
  • Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, Glickman M, Jacobs WR, Porcelli SA & Briken V (2007) Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3: e110.
  • Winau F, Weber S, Sad S, de Diego J, Hoops SL, Breiden B, Sandhoff K, Brinkmann V, Kaufmann SHE & Schaible UE (2006) Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24: 105117.
  • Wong KC, Leong WM, Law HKW et al. (2007) Molecular characterization of clinical isolates of Mycobacterium tuberculosis and their association with phenotypic virulence in human macrophages. Clin Vaccine Immunol 14: 12791284.
  • World Health Organization (2010) Global Tuberculosis Control: WHO report 2010. World Health Organization, Geneva.
  • Zhang M, Gong J & Yang Z (1999) Enhanced Capacity of a Widespread Strain of Mycobacterium tuberculosis to Grow in Human Macrophages. J Infect Dis 179: 12131217.