SEARCH

SEARCH BY CITATION

References

  • Bocchini CE, Hulten KG, Mason EO Jr, Gonzalez BE, Hammerman WA & Kaplan SL (2006) Panton–Valentine leukocidin genes are associated with enhanced inflammatory response and local disease in acute hematogenous Staphylococcus aureus osteomyelitis in children. Pediatrics 117: 433440.
  • Bubeck Wardenburg J, Bae T, Otto M, Deleo FR & Schneewind O (2007) Poring over pores: α-hemolysin and Panton–Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 13: 14051406.
  • Centers for Disease Control and Prevention (CDC) (1999) Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus – Minnesota and North Dakota, 1997–1999. MMWR Morb Mortal Wkly Rep 48: 707710.
  • Chichili GR & Rodgers W (2009) Cytoskeleton–membrane interactions in membrane raft structure. Cell Mol Life Sci 66: 23192328.
  • Cremieux AC, Dumitrescu O, Lina G, Vallee C, Côté JF, Muffat-Joly M, Lilin T, Etienne J, Vandenesch F & Saleh-Mghir A (2009) Panton–Valentine leukocidin enhances the severity of community-associated methicillin-resistant Staphylococcus aureus rabbit osteomyelitis. PLoS One 4: e7204.
  • Diep BA, Chan L, Tattevin P et al. (2010) Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton–Valentine leukocidin-induced lung inflammation and injury. P Natl Acad Sci USA 107: 55875592.
  • Gauduchon V, Werner S, Prevost G, Monteil H & Colin DA (2001) Flow cytometric determination of Panton–Valentine leucocidin S component binding. Infect Immun 69: 23902395.
  • Gillet Y, Etienne J, Lina G & Vandenesch F (2008) Association of necrotizing pneumonia with Panton–Valentine leukocidin-producing Staphylococcus aureus, regardless of methicillin resistance. Clin Infect Dis 47: 985986.
  • Gillet Y, Issartel B, Vanhems P et al. (2002) Association between Staphylococcus aureus strains carrying gene for Panton–Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359: 753759.
  • Gouaux E, Hobaugh M & Song L (1997) α-Hemolysin, γ-hemolysin, and leukocidin from Staphylococcus aureus: distant in sequence but similar in structure. Protein Sci 6: 26312635.
  • Inden K, Kaneko J, Miyazato A et al. (2009) Toll-like receptor 4-dependent activation of myeloid dendritic cells by leukocidin of Staphylococcus aureus. Microbes Infect 11: 245253.
  • Kaneko J & Kamio Y (2004) Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem 68: 9811003.
  • König B, Prevost G, Piemont Y & König W (1995) Effects of Staphylococcus aureus leukocidins on inflammatory mediator release from human granulocytes. J Infect Dis 171: 607613.
  • König B, Köller M, Prevost G, Piemont Y, Alouf JE, Schreiner A & Konig W (1994) Activation of human effector cells by different bacterial toxins (leukocidin, alveolysin, and erythrogenic toxin A): generation of interleukin-8. Infect Immun 62: 48314837.
  • Labandeira-Rey M, Couzon F, Boisset S et al. (2007) Staphylococcus aureus Panton–Valentine leukocidin causes necrotizing pneumonia. Science 315: 11301133.
  • Li HT, Zhang TT, Huang J, Zhou YQ, Zhu JX & Wu BQ (2011) Factors associated with the outcome of life-threatening necrotizing pneumonia due to community-acquired Staphylococcus aureus in adult and adolescent patients. Respiration 81: 448460.
  • Lingwood D & Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327: 4650.
  • Löffler B, Hussain M, Grundmeier M, Brück M, Holzinger D, Varga G, Roth J, Kahl BC, Proctor RA & Peters G (2010) Staphylococcus aureus Panton–Valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog 6: e1000715.
  • Matsuda S, Kodama T, Okada N, Okayama K, Honda T & Iida T (2010) Association of Vibrio parahaemolyticus thermostable direct hemolysin with lipid rafts is essential for cytotoxicity but not hemolytic activity. Infect Immun 78: 603610.
  • Meyer F, Girardot R, Piemont Y, Prevost G & Colin DA (2009) Analysis of the specificity of Panton–Valentine leucocidin and γ-hemolysin F component binding. Infect Immun 77: 266273.
  • Miles G, Movileanu L & Bayley H (2002) Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein Sci 11: 894902.
  • Munckhof WJ, Nimmo GR, Carney J, Schooneveldt JM, Huygens F, Inman-Bamber J, Tong E, Morton A & Giffard P (2008) Methicillin-susceptible, non-multiresistant methicillin-resistant and multiresistant methicillin-resistant Staphylococcus aureus infections: a clinical, epidemiological and microbiological comparative study. Eur J Clin Microbiol Infect Dis 27: 355364.
  • Nakagawa S, Kushiya K, Taneike I, Imanishi K, Uchiyama T & Yamamoto T (2005) Specific inhibitory action of anisodamine against a staphylococcal superantigenic toxin, toxic shock syndrome toxin 1 (TSST-1), leading to down-regulation of cytokine production and blocking of TSST-1 toxicity in mice. Clin Diagn Lab Immunol 12: 399408.
  • Nishiyama A, Kaneko J, Harata M & Kamio Y (2006) Assembly of staphylococcal leukocidin into a pore-forming oligomer on detergent-resistant membrane microdomains, lipid rafts, in human polymorphonuclear leukocytes. Biosci Biotechnol Biochem 70: 13001307.
  • Noda M, Kato I, Hirayama T & Matsuda F (1980) Fixation and inactivation of staphylococcal leukocidin by phosphatidylcholine and ganglioside GM1 in rabbit polymorphonuclear leukocytes. Infect Immun 29: 678684.
  • Olson R, Nariya H, Yokota K, Kamio Y & Gouaux E (1999) Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat Struct Biol 6: 134140.
  • Pany S, Vijayvargia R & Krishnasastry MV (2004) Caveolin-1 binding motif of α-hemolysin: its role in stability and pore formation. Biochem Biophys Res Commun 322: 2936.
  • Pedelacq JD, Maveyraud L, Prevost G, Baba-Moussa L, González A, Courcelle E, Shepard W, Monteil H, Samama JP & Mourey L (1999) The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 7: 277287.
  • Pierini LM, Eddy RJ, Fuortes M, Seveau S, Casulo C & Maxfield FR (2003) Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 278: 1083110841.
  • Rodgers W, Farris D & Mishra S (2005) Merging complexes: properties of membrane raft assembly during lymphocyte signaling. Trends Immunol 26: 97103.
  • Schade AE & Levine AD (2002) Lipid raft heterogeneity in human peripheral blood T lymphoblasts: a mechanism for regulating the initiation of TCR signal transduction. J Immunol 168: 22332239.
  • Shin JS & Abraham SN (2001) Caveolae as portals of entry for microbes. Microbes Infect 3: 755761.
  • Simons K & Ikonen E (1997) Functional rafts in cell membranes. Nature 387: 569572.
  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H & Gouaux JE (1996) Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274: 18591866.
  • Takizawa Y, Taneike I, Nakagawa S, Oishi T, Nitahara Y, Iwakura N, Ozaki K, Takano M, Nakayama T & Yamamoto T (2005) A Panton–Valentine leucocidin (PVL)-positive community-acquired methicillin-resistant Staphylococcus aureus (MRSA) strain, another such strain carrying a multiple-drug resistance plasmid, and other more-typical PVL-negative MRSA strains found in Japan. J Clin Microbiol 43: 33563363.
  • Tong SY, Lilliebridge RA, Bishop EJ, Cheng AC, Holt DC, McDonald MI, Giffard PM, Currie BJ & Boutlis CS (2010) Clinical correlates of Panton–Valentine leukocidin (PVL), PVL isoforms, and clonal complex in the Staphylococcus aureus population of Northern Australia. J Infect Dis 202: 760769.
  • Triantafilou M, Miyake K, Golenbock DT & Triantafilou K (2002) Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115: 26032611.
  • Triantafilou M, Morath S, Mackie A, Hartung T & Triantafilou K (2004) Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J Cell Sci 117: 40074014.
  • Valeva A, Hellmann N, Walev I, Strand D, Plate M, Boukhallouk F, Brack A, Hanada K, Decker H & Bhakdi S (2006) Evidence that clustered phosphocholine head groups serve as sites for binding and assembly of an oligomeric protein pore. J Biol Chem 281: 2601426021.
  • Vandenesch F, Naimi T, Enright MC et al. (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton–Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9: 978984.
  • Yamamoto T, Nishiyama A, Takano T, Yabe S, Higuchi W, Razvina O & Shi D (2010) Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance. J Infect Chemother 16: 225254.
  • Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M & Tanaka I (2011) Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc Natl Acad Sci USA 108: 1731417319.
  • Yost CC, Denis MM, Lindemann S, Rubner FJ, Marathe GK, Buerke M, McIntyre TM, Weyrich AS & Zimmerman GA (2004) Activated polymorphonuclear leukocytes rapidly synthesize retinoic acid receptor-α: a mechanism for translational control of transcriptional events. J Exp Med 200: 671680.
  • Zetola N, Francis JS, Nuermberger EL & Bishai WR (2005) Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis 5: 275286.
  • Zivkovic A, Sharif O, Stich K et al. (2011) TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton–Valentine leukocidin in vivo. J Immunol 186: 16081617.