• Carbazole degradation;
  • Pseudomonas sp.;
  • β-Ketoadipate pathway

Abstract Transposon mutagenesis was performed to pursue the molecular basis of carbazole catabolic pathway in a carbazple-using bacterium, Pseudomonas sp. CA10. One mutant, TD2, was capable of using anthranilic acid but not carbazole as its sole source of carbon, nitrogen, and energy. Another isolated mutant, designated as TE1, was found to have the opposite ability as TD2. TD2 could not convert carbazole to any other compound under cometabolic conditions. On the other hand, TE1 accumulated catechol and cis,cis-muconate from carbazole. The clone containing Tn5-flanking region from TD2, showed the meta-cleavage activity for biphenyl-2,3-diol and analysis of the DNA sequence of this region suggests that the genes involved in the degradation of aromatic compounds are clustered. Our analysis of the DNA sequence of another clone from mutant TE1 showed that the Tn5-Mob can be inserted into the homologous catR gene, a gene that reportedly enpodes the positive regulatory protein of the catBC operon. These data suggests that carbazole catabolic pathway comprises at least two different gene clusters (upper pathway and lower pathway) in Pseudomonas sp. CA10.