• [1]
    Randall, L.L., Hardy, S.L. (1986) Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose-binding protein in E. coli. Cell 46, 921928.
  • [2]
    Eilers, M., Schatz, G. (1988) Protein unfolding and the energetics of protein translocation across biological membranes. Cell 52, 481483.
  • [3]
    Baker, J., Craig, E.A. (1994) Heat-shock proteins as molecular chaperones. Eur. J. Biochem. 219, 1123.
  • [4]
    Kumamoto, C.A. (1991) Molecular chaperones and protein translocation across the Escherichia coli inner membrane. Mol. Microbiol. 5, 1922.
  • [5]
    Stuart, R.A., Cyr, D.M., Craig, E.A., Neupert, W. (1994) Mitochondrial molecular chaperones: their role in protein translocation. Trends Biochem. Sci. 19, 8792.
  • [6]
    Stephenson, K., Harwood, C.R. (1998) Influence of a cell wall-associated protease on production of α-amylase by Bacillus subtilis. Appl. Environ. Microbiol. 64, 28752881.
  • [7]
    Babe, L.M., Schmidt, B. (1998) Purification and biochemical analysis of WprA, a 52-kDa serine protease secreted by Bacillus subtilis as an active complex with its 23-kDa propeptide. Biochim. Biophys. Acta 1386, 211219.
  • [8]
    Kontinen, V.P., Saris, P., Sarvas, M. (1991) A gene (prsA) of Bacillus subtilis involved in a novel late stage of protein export. Mol. Microbiol. 5, 12731283.
  • [9]
    Hughes, A.H., Hancock, I.C., Baddiley, J. (1973) The function of teichoic acids in cation control in bacterial membranes. Biochem. J. 132, 8393.
  • [10]
    Beveridge, T.J., Murray, R.G.E. (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J. Bacteriol. 127, 15021518.
  • [11]
    Chambert, R., Petit-Glatron, M.F. (1990) Reversible thermal unfolding of Bacillus subtilis levansucrase is modulated by Fe3+ and Ca2+. FEBS Lett. 275, 6164.
  • [12]
    Haddaoui, E.A., Leloup, L., Petit-Glatron, M.F., Chambert, R. (1997) Characterization of a stable intermediate trapped during reversible refolding of Bacillus subtilisα-amylase. Eur. J. Biochem. 249, 505509.
  • [13]
    Leloup, L., Le Saux, J., Petit-Glatron, M.F., Chambert, R. (1999) Kinetics of the secretion of Bacillus subtilis levanase overproduced during the exponential phase of growth. Microbiology 145, 613619.
  • [14]
    Archibald, A.R., Hancock, I.C. and Harwood, C.R. (1993) Cell wall structure, synthesis and turnover. In: Bacillus subtilis and Other Gram positive Bacteria (Sonenshein, A.L., Hoch, J.A. and Losick, R., Eds.), pp. 381–410. Biochemistry, Physiology and Molecular Genetics, American Society for Microbiology. Washington, DC.
  • [15]
    Doyle, R. (1989) How cell walls of Gram-positive bacteria interact with metal ions. In: Metal Ions and Bacteria (Beveridge, T.J. and Doyle, R.J., Eds.), pp. 275–293. John Wiley and Sons, New York.
  • [16]
    Archibald, A.R. (1974) The structure, biosynthesis and function of teichoic acid. Adv. Microb. Physiol. 11, 5395.
  • [17]
    Dedonder, R. (1966) Levansucrase from Bacillus subtilis. Methods Enzymol. 8, 500505.
  • [18]
    Leloup, L., Haddaoui, E., Chambert, R., Petit-Glatron, M.F. (1997) Characterization of the rate limiting step of the secretion of Bacillus subtilis (α-amylase overproduced during the exponential phase of growth. Microbiology 143, 32953303.
  • [19]
    Haddaoui, E.A., Petit-Glatron, M.F., Chambert, R. (1995) Characterization of a new cell-bound α-amylase in Bacillus subtilis 168 Marburg that is only immunologically related to the exocellular α-amylase. J. Bacteriol. 177, 51485150.
  • [20]
    Chambert, R., Haddaoui, E.A., Petit-Glatron, M.F. (1995) Bacillus subtilis levansucrase: the efficiency of the second stage of secretion is modulated by external effectors assisting folding. Microbiology 141, 9971005.
  • [21]
    Sillen, L.G. and Martell, A. (1964) Stability Constants of Metal Ion Complexes, Special Publication No. 17. The Chemical Society, London.
  • [22]
    Shabarova, Z.A., Hughes, N.A., Baddiley, J. (1962) The influence of adjacent phosphate and hydroxyl groups on amino acid esters. Biochem. J. 83, 216219.
  • [23]
    Tzeng, C.M., Kornberg, A. (1998) Polyphosphate kinase is highly conserved in many bacterial pathogens. Mol. Microbiol. 29, 381382.
  • [24]
    Kornberg, A. (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J. Bacteriol. 177, 491496.