• [1]
    Hardalo, C., Edberg, S.C. (1997) Pseudomonas aeruginosa: Assessment of risk from drinking water. Crit. Rev. Microbiol. 23, 4775.
  • [2]
    Nicas, T.I., Iglewski, B.H. (1985) The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can. J. MIcrobiol. 31, 387392.
  • [3]
    McClure, C.D., Schiller, N.L. (1992) Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. J. Leukoc. Biol. 51, 97102.
  • [4]
    Burger, M.M., Glaser, L., Burton, R.M. (1963) The enzymatic synthesis of rhamnose-containing glycolipids by extracts of Pseudomonas aeruginosa. J. Biol. Chem. 238, 25952602.
  • [5]
    Pier, G.B. (1985) Pulmonary disease associated with Pseudomonas aeruginosa in cystic fibrosis: current status of the host-bacterium interaction. J. Infect. Dis. 151, 575580.
  • [6]
    Zhou, X., George, E., Frank, D.W., Utley, M., Gilmour, I., Krogfelt, K.A., Claxton, L.D., Laux, D.C., Cohen, P.S. (1997) Isolation and characterization of an attenuated strain of Pseudomonas aeruginosa AC869, a 3,5-dichlorobenzoate degrader. Appl. Environ. Microbiol. 63, 13891395.
  • [7]
    Goldberg, J.B., M.J. Coyne, Jr., Neely, A.N., Holder, I.A. (1995) Avirulence of a Pseudomonas aeruginosa algC mutant in a burned-mouse model of infection. Infect. Immun. 63, 41664169.
  • [8]
    Hatano, K., Goldberg, J.B., Pier, G.B. (1993) Pseudomonas aeruginosa lipopolysaccharide: evidence that the O side chains and the common antigens are on the same molecules. J. Bacteriol. 175, 51175128.
  • [9]
    Liu, P.V., Matsumoto, H., Kusama, H., Bergan, T. (1983) Survey of heat-stable major somatic antigens of Pseudomonas aeruginosa. Int. J. Syst. Bacteriol. 33, 256264.
  • [10]
    Lightfoot, J., Lam, J.S. (1993) Chromosomal mapping, expression and synthesis of lipopolysaccharide in Pseudomonas aeruginosa: a role for guanosine diphospho (GDP)-D-mannose. Mol. Microbiol. 8, 771782.
  • [11]
    Rocchetta, H.L., Pacan, J.C., Lam, J.S. (1998) Synthesis of the A-band polysaccharide sugar D-rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa. Mol. Microbiol. 29, 14191434.
  • [12]
    May, T.B., Chakrabarty, A.M. (1994) Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol. 2, 151157.
  • [13]
    M.J. Coyne, Jr., Russell, K.S., Coyle, C.L., Goldberg, J.B. (1994) The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of complete lipopolysaccharide core. J. Bacteriol. 176, 35003507.
  • [14]
    Chitnis, C.E., Ohman, D.E. (1993) Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operon structure. Mol. Microbiol. 8, 583590.
  • [15]
    Mohr, C.D., Hibler, N.S., Deretic, V. (1991) AlgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the algD promoter located unusually far upstream from the RNA start site. J. Bacteriol. 173, 51365143.
  • [16]
    Wild, M., Caro, A.D., Miller, R.M., Soberón-Chávez, G. (1997) Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant. FEMS Microbiol. Lett. 153, 279285.
  • [17]
    Chandrasekaran, E.V., Bemiller, J.N. (1980) Constituent analyses of glycosaminoglycans. Methods Carbohydr. Chem. 8, 8996.
  • [18]
    Lam, J., Chan, R., Tam, K., Costerton, J.W. (1980) Production of mucoid micro-colonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 28, 546556.
  • [19]
    Ochsner, U.A., Fiechter, A., Reiser, J. (1994) Isolation, characterization and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyl-transferase involved in rhamnolipid biosurfactant synthesis. J. Biol. Chem. 269, 1978719795.
  • [20]
    Pesci, E.C., Pearson, J.P., Seed, P.C., Iglewski, B.H. (1997) Regulation of the las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179, 3127.
  • [21]
    Fuqua, W.C., Winans, S.C., Greenberg, E.P. (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum sensing transcriptional regulators. Annu. Rev. Microbiol. 50, 727751.
  • [22]
    Mohr, C.D., Deretic, V. (1990) Gene-scrambling mutagenesis: generation and analysis of insertional mutations in the alginate regulatory region of Pseudomonas aeruginosa. J. Bacteriol. 172, 62526260.
  • [23]
    Zelinski, N.A., Chakrabarty, A.M., Berry, A. (1991) Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J. Biol. Chem. 266, 97549763.
  • [24]
    Deretic, V., Schurr, M.J., Boucher, J.C., Martin, D.W. (1994) Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J. Bacteriol. 176, 27732780.
  • [25]
    Hershberger, C.D., Ye, R.W., Parsek, M.R., Xie, Z.-D., Chakrabarty, A.M. (1995) The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative σ factor (σE). Proc. Natl. Acad. Sci. USA 92, 79417945.
  • [26]
    Goldberg, J.B., Gorman, W.L., Flynn, J.L., Ohman, D.E. (1993) A mutation in algN permits trans activation of alginate production by algT in Pseudomonas species. J. Bacteriol. 175, 13031308.