• [1]
    Imhoff, J.F., Süling, J., Petri, R. (1998) Phylogenetic relationships and taxonomic reclassification of Chromatium species and related purple sulfur bacteria. Int. J. Syst. Bacteriol. 48, 11291143.
  • [2]
    Pott, A.S., Dahl, C. (1998) Sirohaem-sulfite reductase and other proteins encoded in the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144, 18811894.
  • [3]
    Schedel, M., Vanselow, M., Trüper, H.G. (1979) Siroheme sulfite reductase from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties. Arch. Microbiol. 121, 2936.
  • [4]
    Brune, D.C. (1995) Sulfur compounds as photosynthetic electron donors. In: Anoxygenic Photosynthetic Bacteria (Blankenship, R.E., Madigan, M.T. and Bauer, C.E., Eds.), pp. 847–870. Kluwer Academic, Dordrecht.
  • [5]
    Vignais, P., Toussaint, B. and Colbeau, A. (1995) Regulation of hydrogenase gene expression. In: Anoxygenic Photosynthetic Bacteria (Blankenship, R.E., Madigan, M.T. and Bauer, C.E., Eds.), pp. 1175–1190. Kluwer Academic, Dordrecht.
  • [6]
    Colbeau, A., Kovacs, K.L., Chabert, J., Vignais, P.M. (1994) Cloning and sequences of the structural (hupSLC) and accessory (hupDHL) genes for hydrogenase biosynthesis in Thiocapsa roseopersicina. Gene 140, 2531.
  • [7]
    Rakhely, G., Colbeau, A., Garin, J., Vignais, P.M., Kovacs, K.L. (1998) Unusual organization of the genes coding for HydSL, the stable [NiFe] hydrogenase in the photosynthetic bacterium Thiocapsa roseopersicina BBS. J. Bacteriol. 180, 14601465.
  • [8]
    Dahl, C., Trüper, H.G. (1994) Enzymes of dissimilatory sulfide oxidation in phototrophic bacteria. Methods Enzymol. 243, 400421.
  • [9]
    Pfennig, N. and Trüper, H.G. (1992) The family Chromatiaceae. In: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K.-H., Eds.), pp. 3200–3221. Springer-Verlag, New York.
  • [10]
    Bazaral, M., Helinski, D.R. (1968) Circular DNA forms of colicinogenic factors E1, E2 and E3 from Escherichia coli. J. Mol. Biol. 36, 185194.
  • [11]
    Dahl, C., Speich, N., Trüper, H.G. (1994) Enzymology and molecular biology of sulfate reduction in the extremely thermophilic archaeon Archaeoglobus fulgidus. Methods Enzymol. 243, 331349.
  • [12]
    Dahl, C. (1996) Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum. Microbiology 142, 33633372.
  • [13]
    Olsen, J., Woese, C.R., Overbeek, R. (1994) The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176, 16.
  • [14]
    Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 33893402.
  • [15]
    Higgins, D.G., Sharp, P.M. (1989) Clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237244.
  • [16]
    Dayhoff, M.O. (1978) Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Washington, DC.
  • [17]
    Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package) version 3.5c.
  • [18]
    Gogarten, J.P. (1994) Which is the most conserved group of proteins? Homology-orthology, paralogy, xenology, and the fusion of independent lineages. J. Mol. Evol. 39, 541543.
  • [19]
    Hedderich, R., Koch, J., Linder, D., Thauer, R.K. (1994) The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Eur. J. Biochem. 225, 253261.
  • [20]
    Künkel, A., Vaupel, M., Heim, S., Thauer, R.K., Hedderich, R. (1997) Heterodisulfide reductase from methanol-grown cells of Methanosarcina barkeri is not a flavoenzyme. Eur. J. Biochem. 244, 226234.