• [1]
    Brown, A.D. (1978) Compatible solute and extreme water stress in eukaryotic micro-organisms. Adv. Microb. Phys. 17, 181242.
  • [2]
    Blomberg, A., Adler, L. (1992) Physiology of osmotolerance in fungi. Adv. Microb. Phys. 33, 145212.
  • [3]
    Varela, J.C.S., Mager, W.H. (1996) Response of Saccharomyces cerevisiae to changes in external osmolarity. Microbiology 142, 721731.
  • [4]
    Hohmann, S. (1997) Shaping up: the response of yeast to osmotic stress. In: Yeast Stress Responses (Hohmann, S. et al., Eds.), pp. 101–146. Springer, New York.
  • [5]
    Gustin, M.C., Albertyn, J., Alexander, M., Davenport, K. (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 12641300.
  • [6]
    Bonhivers, M., Carbrey, J.M., Gould, S.J., Agre, P. (1998) Aquaporins in Saccharomyces. Genetic and functional distinctions between laboratory and wild-type strains. J. Biol. Chem. 273, 2756527572.
  • [7]
    Blomberg, A. (1997) The osmotic hypersensitivity of the yeast Saccharomyces cerevisiae is strain and growth media dependent: quantitative aspects of the phenomenon. Yeast 13, 529539.
  • [8]
    Blomberg, A., Larsson, C., Gustafsson, L. (1988) Microcalorimetric monitoring of growth of Saccharomyces cerevisiae: Osmotolerance in relation to physiological state. J. Bacteriol. 170, 45624568.
  • [9]
    Serrano, R., Marquez, J.A. and Rios, G. (1997) Crucial factors in salt stress tolerance. In: Yeast Stress Responses (Hohmann, S. et al., Eds.), pp. 147–170. Springer, New York.
  • [10]
    Prior, C., Potier, S., Souciet, J.L., Sychrova, H. (1996) Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett. 387, 8993.
  • [11]
    Adler, L., Blomberg, A., Nilsson, A. (1985) Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. J. Bacteriol. 162, 300306.
  • [12]
    Luyten, K., Albertyn, J., Skibbe, W.F., Prior, B.A., Ramos, J., Thevelein, J.M., Hohmann, S. (1995) FPS1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14, 13601371.
  • [13]
    Blomberg, A., Adler, L. (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J. Bacteriol. 171, 10871092.
  • [14]
    Larsson, K., Ansell, R., Eriksson, P., Adler, L. (1993) A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol. Microbiol. 10, 11011111.
  • [15]
    Albertyn, J., Hohmann, S., Thevelein, J.M., Prior, B.A. (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high osmolarity glycerol response pathway. Mol. Cell. Biol. 14, 41354144.
  • [16]
    Eriksson, P., André, L., Ansell, R., Blomberg, A., Adler, L. (1995) Cloning and characterisation of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol. Microbiol. 17, 95107.
  • [17]
    Norbeck, J., Blomberg, A. (1997) Two-dimensional electrophoretic separation of yeast proteins using a non-linear wide range (pH 3–10) immobilized pH gradient in the first dimension; reproducibility and evidence for isoelectric focusing of alkaline (pI>7) proteins. Yeast 13, 529539.
  • [18]
    Blomberg, A. (1995) Global changes in protein synthesis during adaptation to 0.7 M NaCl medium of Saccharomyces cerevisiae. J. Bacteriol. 177, 35633572.
  • [19]
    Norbeck, J., Påhlmann, A.-K., Akhtar, N., Blomberg, A., Adler, L. (1996) Purification and characterization of two isoenzymes of DL-glycerol 3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 271, 1387513883.
  • [20]
    Hirayama, T., Maeda, T., Saito, H., Shinozaki, K. (1995) Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Mol. Gen. Genet. 249, 127138.
  • [21]
    Norbeck, J., Blomberg, A. (1997) Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M sodium chloride: Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272, 55445554.
  • [22]
    Kato, N., Yoshikawa, H., Tanaka, K., Shimao, M., Sakazawa, C. (1988) Dihydroxyacetone kinase from a methylotrophic yeast, Hansenula polymorpha CBS 4732. Arch. Microbiol. 150, 155159.
  • [23]
    van Zyl, P.J., Prior, B.A., Kilian, S.G. (1991) Regulation of glycerol metabolism in Zygosaccharomyces rouxii in response to osmotic stress. Appl. Microbiol. Biotechnol. 36, 369374.
  • [24]
    Meikle, A.J., Chudek, J.A., Reed, R.H., Gadd, G.M. (1991) Natural abundance 13C nuclear magnetic resonance spectroscopic analysis of acyclic polyol and trehalose accumulation by several yeast species in response to salt stress. FEMS Microbiol. Lett. 82, 163.
  • [25]
    Parrou, J.L., Teste, M.-A., Francois, J. (1997) Effects of various types of stress on the metabolism of reserve carbohydratesin Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143, 18911900.
  • [26]
    Singer, M.A., Lindquist, S. (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell. 1, 639648.
  • [27]
    Allison, S.D., Chang, B., Randolph, T.W., Carpenter, J.F. (1999) Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch. Biochem. Biophys. 356, 289298.
  • [28]
    Crowe, J.H., Crowe, L.M., Chapman, D. (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223, 701703.
  • [29]
    Ölz, R., Larsson, K., Adler, L., Gustafsson, L. (1993) Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostat under NaCl stress. J. Bacteriol. 175, 22052213.
  • [30]
    Winderickx, J.H.d.W.J., Crauwels, M., Hino, A., Hohmann, S., Van Dijck, P., Thevelein, J.M. (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control Mol. Gen. Genet. 252, 470482.
  • [31]
    Akhtar, N., Blomberg, A., Adler, L. (1997) Osmoregulation and protein expression in a pbs2Δ mutant of Saccharomyces cerevisiae during adaptation to hypersaline stress. FEBS Lett. 403, 173180.
  • [32]
    Norbeck, J. and Blomberg, A. (1999) The level of cAMP dependent protein kinase A activity strongly affects osmotolerance and osmo instigated gene expression changes in Saccharomyces cerevisiae. Yeast, in press.
  • [33]
    Godon, C., Lagniel, G., Lee, J., Buhler, J.-M., Kieffer, S., Perrot, M., Boucherie, H., Toledano, M.B., Labarre, J. (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 2248022489.
  • [34]
    Blazquez, M.A., Lagunas, R., Gancedo, C., Gancedo, J.M. (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 329, 5154.
  • [35]
    Teusink, B., Walsh, M.C., van Dam, K., Westerhoff, H.V. (1998) The danger of metabolic pathways with turbo design. TIBS 23, 162169.
  • [36]
    Neves, M.J., Hohmann, S., Bell, W., Dumortier, F., Luyten, K., Ramos, J., Cobbaert, P., de Koning, W., Kaneva, Z., Thevelein, J.M. (1995) Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Curr. Genet. 27, 110122.
  • [37]
    Jong, A., Yeh, Y., Ma, J.J. (1993) Characteristics, substrate analysis, and intracellular location of Saccharomyces cerevisiae UMP kinase. Arch. Biochem. Biophys. 304, 197204.
  • [38]
    Van Aelst, T., Hohmann, S., Zimmermann, F.K., Jans, A.W.H., Thevelein, J.M. (1991) A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling. EMBO J. 10, 20952104.
  • [39]
    Hohmann, S., Neves, M.J., de Koning, W., Alijo, R., Ramos, J., Thevelein, J.M. (1993) The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr. Genet. 23, 281289.
  • [40]
    Jennings, D.H., Burke, R.M. (1990) Compatible solutes - the mycological dimension and their role as physiological buffering agents. N. Phytol. 116, 277.
  • [41]
    Hottiger, T., Schmutz, P., Wiemken, A. (1987) Heat-induced accumulation and cycling of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 169, 55185522.
  • [42]
    Zähringer, H., Burgert, M., Holzer, H., Nwaka, S. (1997) Neutral trehalase Nth1p of Saccharomyces cerevisiae encoded by the NTH1 gene is a multiple stress responsive protein. FEBS Lett. 412, 615620.
  • [43]
    Jelinsky, S.A., Samson, L.D. (1999) Global responses of Saccharomyces cerevisiae to an alkylating agent. Proc. Natl. Acad. Sci. USA 96, 14861491.
  • [44]
    Timasheff, S.N. (1995) Solvent stabilization of protein structure. Methods Mol. Biol. 40, 253269.
  • [45]
    de Winde, J.H., Thevelein, J.M. and Winderickx, J. (1997) From feast to famine: asaptation to nutrient depletion in yeast. In: Yeast Stress Responses (Hohmann, S. et al., Eds.), pp. 7–52. Springer, New York.
  • [46]
    McAlister, L., Holland, M.J. (1985) Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde-3-phosphate dehydrogenase genes. J. Biol. Chem. 260, 1501315018.
  • [47]
    DeRisi, J.L., Lyer, V.R., Brown, P.O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680686.