• [1]
    Shoham, Y., Schwartz, Z., Khasin, A., Gat, O., Zosim, Z., Rosenberg, E. (1992) Delignification of wood pulp by a thermostable xylanase from Bacillus stearothermophilus strain T-6. Biodegradation 3, 207218.
  • [2]
    Schwien, U., Schmidt, E. (1982) Improved degradation of monochloro phenols by a constructed strain. Appl. Environ. Microbiol. 44 (1), 3339.
  • [3]
    Bedard, D.L., Haberl, M.L., May, R.J., Brennan, M.J. (1987) Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H 850. Appl. Environ. Microbiol. 53, 11031112.
  • [4]
    Valenzuela, J., Bumann, U., Cespedes, R., Padilla, L., Gonzalez, B. (1997) Degradation of chlorophenols by Alcaligenes eutrophus JMP134 (pJ4) in bleached Kraft mill effluent. Appl. Environ. Microbiol. 63 (1), 227232.
  • [5]
    Mohn, W.W., Stewart, G.R. (1997) Bacterial metabolism of chlorinated dehydroabietic acids occuring in pulp and paper mill effluents. Appl. Environ. Microbiol. 63 (8), 30143020.
  • [6]
    Yang, J.L., Lou, G., Eriksson, K.E.L. (1992) The impact of xylanase on bleaching of kraft pulps. Tappi. J. 75 (12), 95101.
  • [7]
    Larsson, A., Anderson, T., Forlin, L., Hardig, J. (1988) Physiological disturbances in fish exposed to bleached kraft mill effluents. Water Sci. Tech. 20 (2), 6776.
  • [8]
    Browning, B.L. (1963) The composition and chemical reactions of wood. In: The Chemistry of Wood (Browning, B.L., Ed.), pp. 58–101. John Wiley and Sons, New York.
  • [9]
    Nakamura, S., Nakai, R., Wakabayashi, K., Ishiguro, Y., Aono, R., Horikoshi, K. (1994) Thermophilic alkaline xylanase from newly isolated Alkaliphilic and thermophilic Bacillus sp. strain TAR-1. Biosci. Biotech. Biochem. 58 (1), 7881.
  • [10]
    Schofield, L.R., Daniel, R.M. (1993) Purification and properties of a β-1,4-xylanase from a cellulolytic extreme thermophile expressed in Escherichia coli. Int. J. Biochem. 25 (4), 609617.
  • [11]
    Dahlberg, L., Holst, O., Kristjansson, J.K. (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl. Microbiol. Biotechnol. 40, 6368.
  • [12]
    Jurasek, L., Paice, M. (1986) Pulp, paper and biotechnology. Chemtechnology 16, 360365.
  • [13]
    Viikari, L., Ranua, M., Kantelinen, A., Linko, M. and Sundquist, J. (1986) Bleaching with enzymes. In: Biotechnology in the Pulp and Paper Industry. Proc. 3rd Int. Conf., Stockholm, pp. 67–69.
  • [14]
    Srinivasan, M.C., Rele, M.V. (1995) Cellulase-free xylanases from microorganisms and their application to pulp and paper biotechnology: an overview. Indian J. Microbiol. 35 (2), 93101.
  • [15]
    Kantelinen, A., Sundquist, J., Linko, M. and Viikari, L. (1991) The role of reprecipitated xylan in the enzymatic bleaching of kraft pulp. In: The 6th International Symposium on Wood and Pulping Chemistry, Melbourne, April 29–May 3, pp. 493–500.
  • [16]
    Ziobro, G.C. (1990) Origin and nature of kraft colour: 1. Role of aromatics. J. Wood Chem. Technol. 10, 133149.
  • [17]
    Forsskahl, I., Popoff, T., Theander, O. (1976) Reactions of D-xylose and D-glucose in alkaline, aqueous solutions. Carbohydr. Res. 48, 1321.
  • [18]
    Haltrich, D., Nidetzky, B., Kulbe, K.D., Steiner, W., Zupancic, S. (1996) Production of fungal xylanases. Bioresource Tech. 58, 137161.
  • [19]
    Okeke, B.C., Obi, S.K.C. (1995) Production of cellulolytic and xylanolytic enzymes by an Arthrographis species. World J. Microbiol. Biotechnol. 9, 345349.
  • [20]
    Poutanen, K., Ratto, M., Puls, J., Viikari, L. (1987) Evaluation of different microbial xylanolytic systems. J. Biotechnol. 6, 4960.
  • [21]
    Kang, S.W., Kim, S.-W., Lee, J.-S. (1995) Production of cellulase and xylanase in a bubble column using immobilized Aspergillus niger KKS. Appl. Biochem. Biotech. 53, 101106.
  • [22]
    Zychlinska, A.W., Czakaj, J., Jedrychowska, B. and Zukowska, R.S. (1992) Production of xylanases by Cheatomium globosum In: Xylans and Xylanases. Progress in Biotechnology, Vol. 7, (Visser, J., Beldman, G., Kursters-van Someran, M.A. and Voragen, A.G.J., Eds.), pp. 493–496. Elsevier Science Publishers, Amsterdam.
  • [23]
    Kawai, M., Noguchi, S., Shimura, G., Suga, Y., Samejima, H. (1978) Effect of some different culture conditions on production of cellulolytic and plant tissue macerating enzymes by Irpex lacteus Fr. Agric. Biol. Chem. 42, 333337.
  • [24]
    Brown, J.A., Collin, S.A., Wood, T.M. (1987) Development of a medium for high cellulase, xylanase and β-glucosidase production by a mutant strain (NTG 111/6) of the cellulolytic fungus Penicillium pinophilum. Enzyme Microb. Technol. 9, 355360.
  • [25]
    Copa-Patino, J.L., Kim, Y.G., Broda, P. (1993) Production and initial characterisation of the xylan-degrading system of Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 40, 6976.
  • [26]
    Teunissen, M.J., de Kort, G.V.M., Op den Camp, H.J.M., Huis in t Veld, J.H.J. (1992) Production of cellulolytic and xylanolytic enzymes during growth of the anaerobic fungus Piromyces sp. on different substrates. J. Gen. Microbiol. 138, 16571664.
  • [27]
    Steiner, W., Lafferty, R.M., Gomes, I., Esterbauer, H. (1987) Studies on a wild strain of Schizophyllum commune: Cellulase and xylanase production and formation of the extracellular polysaccharide. Schizophyllan. Biotechnol. Bioeng. 30, 169178.
  • [28]
    Cavazzoni, V., Manzoni, M., Parini, C., Bonferomi, M.C. (1989) D-Xylanase produced by Schizophyllum radiatum. Appl. Microbiol. Biotechnol. 30, 247251.
  • [29]
    Sachslehner, A., Haltrich, D., Nidetzky, B. and Klube, K.D. (1997) Production of hemicellulose degrading enzymes by various strains of Sclerotium rolfsii. Appl. Biochem. Biotech. 63–65, 189–201.
  • [30]
    Eriksson, K.-E., Johnsrud, S.C. (1983) Mutants of the white rot fungus Sporotrichum pulverulentum with increased cellulase and b-glucosidase production. Enzyme Microb. Technol. 5, 425429.
  • [31]
    Tuohy, M., Coughlan, T.L. and Coughlan, M.P. (1990) Solid-state versus liquid cultivation of Talaromycs emersonii on straw and pulps: enzyme productivity. In: Advances in Biological Treatment of Lignocellulosic Materials (Coughlan, M.P. and Amaral Collaco, M.T., Eds.), pp. 153–175. Elsevier Applied Science, London.
  • [32]
    Gomes, J., Purkarthofer, H., Hayn, M., Kapplmuller, J., Sinner, M., Steiner, W. (1993) Production of a high level of cellulase- free xylanase by the thermophilic fungus Thermomyces lanuginosus in laboratory and pilot scales using lignocellulosic materials. Appl. Microbiol. Biotechnol. 39, 700707.
  • [33]
    Merchant, R., Merchant, F., Margaritis, A. (1988) Production of xylanase by the thermophilic fungus Thielavia terrestris. Biotechnol. Lett. 10, 513516.
  • [34]
    Gomes, J., Esterbauer, H., Gomes, I., Steiner, W. (1989) Screening of some wild fungal isolates for cellulolytic activities. Lett. Appl. Microbiol. 8, 6770.
  • [35]
    Saddler, J.N., Hogan, C.M., Louis-Seize, G. (1985) A comparison between the cellulase systems of Trichoderma harzianum E58 and Trichoderma reesei C30. Appl. Microbiol. Biotechnol. 22, 139145.
  • [36]
    Gamerith, G., Groicher, R., Zeilinger, S., Herzog, P., Kubicek, C.P. (1992) Cellulase poor xylanase produced by Trichoderma reesei RUT C-30 on hemicellulose substrates. Appl. Microbiol. Biotechnol. 38, 315322.
  • [37]
    Bailey, M.J., Buchert, J., Viikari, L. (1993) Effect of pH on production of xylanase by Trichoderma reesei on xylan - and cellulose - based media. Appl. Microbiol. Biotechnol. 40, 224229.
  • [38]
    Xu, J., Nogawa, M., Okada, H., Morikawa, Y. (1998) Xylanase induction L-sorbose in a fungus Trichoderma reesei PC-3-7. Biosci. Biotechnol. Biochem. 62 (8), 15551559.
  • [39]
    Gomes, I., Gomes, J., Steiner, W., Esterbauer, H. (1992) Production of cellulase and xylanase by a wild strain of Trichoderma viride. Appl. Microbiol. Biotechnol. 36, 701707.
  • [40]
    Ratto, M., Poutanen, K., Viikari, L. (1992) Production of xylanolytic enzymes by an alkalitolerant Bacillus circulans strain. Appl. Microbiol. Biotechnol. 37, 470473.
  • [41]
    Khasin, A., Alchanati, I., Shoham, Y. (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59 (6), 17251730.
  • [42]
    Lundgren, K.R., Bergkvist, L., Hogman, S., Joves, H., Eriksson, G., Bartfai, T., Laan, J.V.D., Rosenberg, E., Shoham, Y. (1994) TCF Mill Trial on softwood pulp with Korsnas thermostable and alkaline stable xylanase T6. FEMS Microbiol. Rev. 13, 365368.
  • [43]
    Balakrishnan, H., Dutta-Choudhury, M., Sreenivasan, M.C., Rele, M.V. (1992) Cellulase-free xylanase production from an alkalophilic Bacillus sp. World J. Microbiol. Biotechnol. 8, 627631.
  • [44]
    Paul, J., Varma, A.K. (1993) Characterisation of cellulose and hemicellulose degrading Bacillus sp. from termite infested soil. Curr. Sci. 64 (4), 262266.
  • [45]
    Poulsen, O.M., Petersen, L.W. (1988) Growth of Cellulomonas sp. ATCC 21399 on different polysaccharides as sole carbon source. Induction of extracellular enzymes. Appl. Microbiol. Biotechnol. 29, 480484.
  • [46]
    Rajoka, M.I., Malik, K.A. (1984) Cellulase and hemicellulase production by Cellulomonas flavigena NIAB 441. Biotechnol. Lett. 6 (9), 597600.
  • [47]
    Saxena, S., Bahadur, J., Varma, A. (1991) Production and localisation of carboxymethylcellulase xylanase and β-glucosidase from Cellulomonas and Micrococcus spp. Appl. Microbiol. Biotechnol. 34, 668670.
  • [48]
    Hreggvidsson, G.O., Kaiste, E., Holst, O., Eggertsson, G., Palsdottir, A., Kristjansson, J.K. (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl. Environ. Microbiol. 62 (8), 30473049.
  • [49]
    Grabski, A.C., Jeffries, T.W. (1991) Production, purification and characterization of β-(1-4)-endoxylanase of Streptomyces roseiscleroticus. Appl. Environ. Microbiol. 57 (4), 987992.
  • [50]
    Subramaniyan, S., Prema, P., Ramakrishna, S.V. (1997) Isolation and screening for alkaline thermostable xylanases. J. Basic Microbiol. 37 (6), 431437.
  • [51]
    Subramaniyan, S., Prema, P. (1998) Optimisation of cultural parameters for the synthesis of endo-xylanases from Bacillus SSP-34. J. Sci. Ind. Res. 57 (10–11), 611616.
  • [52]
    Subramaniyan, S. (1999) Studies on the Production of Bacterial Xylanases. Ph.D. thesis submitted to Cochin University of Science and Technology.
  • [53]
    Okazaki, W., Akiba, T., Horikoshi, K., Akahoshi, R. (1985) Purification and characterisation of xylanase from alkalophilic, thermophilic Bacillus spp. Agric. Biol. Chem. 49, 20332039.
  • [54]
    Honda, H., Kudo, T., Ikura, Y., Horikoshi, K. (1985) Two types of xylanases of alkalophilic Bacillus sp. No C-125. Can. J. Microbiol. 31, 538542.
  • [55]
    Purkarthofer, H., Sinner, M., Steiner, W. (1993) Cellulase-free xylanase from Thermomyces lanuginosus: Optimization of production in submerged and solid-state culture. Enzyme Microb. Technol. 15, 677682.
  • [56]
    Taguchi, H. (1971) The nature of fermentation fluids. Adv. Biochem. Eng. 1.
  • [57]
    Palma, M.B., Milagres, A.M.F., Prata, A.M.R., de Mancilha, I.M. (1996) Influence of aeration and agitation rate on the xylanase activity from Penicillium janthinellum. Process Biochem. 31 (2), 141145.
  • [58]
    Gilbert, H.J., Hazlewood, G.P. (1993) Bacterial cellulases and xylanases. J. Gen. Microbiol. 139, 187194.
  • [59]
    Horikoshi, K. (1991) Microorganisms in Alkaline Environments, pp. 5–24. Kodansha and VCH.
  • [60]
    Samain, E., Touzel, J.P., Brodel, B. and Debeire, P. (1992) Isolation of a thermophilic bacterium producing high levels of xylanase. In: Xylans and Xylanases. Progress in Biotechnology, Vol. 7 (Visser, J., Beldman, G., Kursters-van Someran, M.A. and Voragen, A.G.J., Eds.), pp. 467–470. Elsevier Science Publishers, Amsterdam.
  • [61]
    Fernandez-Espinar, M.T., Ramon, D., Pinaga, F., Valles, S. (1992) Xylanase production by Aspergillus nidulans. FEMS Microbiol. Lett. 91, 9196.
  • [62]
    Nakamura, S., Wakabayashi, K., Nakai, R., Aono, R., Horikoshi, K. (1993) Production of alkaline xylanase by a newly isolated alkaliphilic Bacillus sp. strain 41M-1. World J. Microbiol. Biotechnol. 9, 221224.
  • [63]
    Bailey, M.J., Poutanen, K. (1989) Production of xylanolytic enzymes by strains of Aspergillus. Appl. Microbiol. Biotechnol. 30, 510.
  • [64]
    Royer, J.C., Novak, J.S., Nakas, J.P.S. (1992) Apparent cellulase activity of purified xylanase is due to contamination of assay substrate with xylan. J. Ind. Microbiol. 11, 413417.
  • [65]
    Senior, D.J., Mayers, P.R., Miller, D., Sutcliffe, R., Tan, L., Saddler, J.N. (1988) Selective solubilization of xylan in pulp using a purified xylanase from Trichoderma harzianum. Biotechnol. Lett. 10 (12), 907912.
  • [66]
    Din, N., Gilkes, N.R., Tekant, B., R.C. Miller, Jr., Warren, R.A.J., Kilburn, D.C. (1991) Non-hydrolytic disruption of cellulosic fibres by the binding domains of a bacterial cellulase. Bio/Technology 9 (11), 10961099.
  • [67]
    Karita, S., Sakka, K., Ohmiya, K. (1996) Cellulose-binding domains confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J. Ferment. Bioeng. 81 (6), 553556.
  • [68]
    Malburg, S.R.C., L.M. Malburg, Jr., Liu, T., Iyo, A.H., Forsberg, C.W. (1997) Catalytic properties of the cellulose-binding endoglucanase F from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 63 (6), 24492453.
  • [69]
    Black, G.W., Rixon, J.E., Clarke, J.H., Hazlewood, G.P., Ferreira, L.M.A., Bolam, D.N., Gilbert, H.J. (1997) Cellulase binding domains and linker sequences potenciate the activity of hemicellulases against complex substrates. J. Biotechnol. 57, 5969.
  • [70]
    Sun, J.L., Sakka, K., Karita, S., Kimura, T., Ohmiya, K. (1998) Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBDs to xylan hydrolysis. J. Ferment. Bioeng. 85 (1), 6368.
  • [71]
    Sakka, K., Takada, G., Karita, S. and Ohmiya, K. (1996) Identification and characterisation of cellulose binding domains in Xylanase A of Clostridium stercorarium. In: Recombinant DNA Biotechnology III. The Integration of Biological and Engineering sciences. Annals of the New York Acad. of Sci. 782, pp 241–251.
  • [72]
    Linder, M., Teeri, T.T. (1997) The role of cellulose binding domains. J. Biotechnol. 57, 1528.
  • [73]
    Millward-Sadler, S.J., Poole, D.M., Henrissat, B., Hazlewood, G.P., Clarke, J.H., Gilbert, H.J. (1994) Evidence of a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol. Microbiol. 11 (2), 375382.
  • [74]
    Sakka, K., Kojima, Y., Kondo, T., Karita, S., Ohmiya, K., Shimada, K. (1993) Nucleotide sequence of the Clostridium stercorarium xyn A gene encoding xylanase A: identification of catalytic and cellulose binding domains. Biosci. Biotechnol. Biochem. 57, 273277.
  • [75]
    Hazlewood, G.P. and Gilbert, H.J. (1992) The molecular architecture of xylanases from Pseudomonas fluorescens subsp. cellulosa. In: Xylans and Xylanases. Progress in Biotechnology, Vol. 7 (Visser, J., Beldman, G., Kursters-van Someran, M.A. and Voragen, A.G.J., Eds.), pp. 259–273. Elsevier Science Publishers, Amsterdam.
  • [76]
    Ruiz-Arribas, A., Sanchez, P., Calvete, J.J., Raida, M., Fernandez-Abalos, J.M., Santamaria, R.I. (1997) Analysis of xysA, a gene from Streptomyces halstedii JM8 that encodes a 45-kilodalton modular xylanase, Xys1. Appl. Environ. Microbiol. 63 (8), 29832988.
  • [77]
    Christakopoulos, P., Nerinckx, W., Kekos, D., Macris, B., Claeyssens, M. (1996) Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. J. Biotechnol. 51, 181189.
  • [78]
    MacLeod, A.M., Lindhorst, T., Withers, S.G., Warren, R.A.J. (1994) The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: Evidence from detailed kinetic studies of mutants. Biochemistry 33, 63716376.
  • [79]
    Tull, D., Withers, S.G. (1994) Mechanisms of cellulases and xylanases: A detailed kinetic study of the exo-β-1,4-glycanase from Cellulomonas fimi. Biochemistry 33, 63636370.